Bài giảng Tài chính phái sinh: Chương 13 - Mô hình Black-Scholes-Merton
lượt xem 51
download
Nội dung chính của Chương 13 Mô hình Black-Scholes-Merton trong bộ bài giảng Tài chính phái sinh trình bày về thuộc tính của Logarit chuẩn, phân phối Log chuẩn và lợi nhuận kỳ vọng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Tài chính phái sinh: Chương 13 - Mô hình Black-Scholes-Merton
- Mô hình Black-Scholes- Merton Chương 13 Options, Futures, and Other Derivatives, 6th Edition, Copyright © John C. Hull 2005 13.1
- Giả định giá cổ phiếu Xem xét một cổ phiếu có giá là S Trong một thời gian ngắn ∆t, lợi nhuận của cổ phiếu được phân phối chuẩn: ∆S S ( ≈ φ µ∆t , σ ∆t ) với µ là lợi nhuận kỳ vọng và σ là độ biến động (độ rủi ro - volatility) Options, Futures, and Other Derivatives, 6th Edition, 13.2
- Thuộc tính của Logarit chuẩn (Các phương trình 13.2 và 13.3, trang 282) Từ giả định trên, ta có: σ2 ln ST − ln S0 ≈ φ µ − T , σ T 2 or σ2 ln ST ≈ φln S0 + µ − T , σ T 2 Vìlogarit của ST là logarit chuẩn (log cơ số 10 - ND) nên ST có phân phối logarit chuẩn. Options, Futures, and Other Derivatives, 6th Edition, 13.3
- Phân phối Log chuẩn E ( ST ) = S0 e µT 2 2 µT σ 2T var ( ST ) = S0 e (e − 1) Options, Futures, and Other Derivatives, 6th Edition,
- Suất sinh lợi gộp lãi liên tục, x ( Các phương trình 13.6 và 13.7, trang 283) ST = S 0 e xT hoặc 1 ST x = ln T S0 hoặc σ2 σ x ≈ φ µ − , 2 T Options, Futures, and Other Derivatives, 6th Edition, 13.5
- Lợi nhuận kỳ vọng Giá cổ phiếu kỳ vọng là S0eµT Suất sinh lợi kỳ vọng của cổ phiếu là µ – σ2 /2 chứ không phải µ Nguyên nhân là do ln[ E ( ST / S 0 )] va E[ln(ST / S 0 )] không bằng nhau Options, Futures, and Other Derivatives, 6th Edition, 13.6
- µ và µ−σ 2 /2 Giả sử chúng ta có dữ liệu hàng ngày trong một giai đoạn vài tháng m suất sinh lợi trung bình trong m ỗi ngày [=E(∆S/S)] m−s2/2 là lợi nhuận kỳ vọng của toàn bộ giai đoạn tính được từ dữ liệu nói trên bằng cách gộp lãi liên tục (hoặc gộp hàng ngày, cũng cho kết quả tương tự). Options, Futures, and Other Derivatives, 6th Edition, 13.7
- Lợi nhuận của Quỹ Tương hỗ (Xem Business Snapshot 13.1 trên trang 285) Giả sử lợi nhuận của các năm liên tục là 15%, 20%, 30%, -20% và 25% Trung bình cộng của các mức lợi nhuận trên là 14% Lợi nhuận sẽ thực sự đạt được trong giai đoạn 5 năm (trung bình nhân) là 12.4% Options, Futures, and Other Derivatives, 6th Edition, 13.8
- Độ biến động Độ biến động là độ lệch chuẩn của tỷ suất sinh lợi gộp lãi liên tục trong 1 năm Độ lệch chuẩn của suất sinh lợi trong khoảng thời gian ∆t là σ ∆t Nếu giá cổ phiếu là $50 và độ biến động của nó là 25% một năm thì độ lệch chuẩn của thay đổi giá trong một ngày là bao nhiêu? Options, Futures, and Other Derivatives, 6th Edition, 13.9
- Ước tính độ biến động từ các dữ liệu lịch sử (trang 286-88) 1. Quan sát S0, S1, . . . , Sn trong khoảng thời gian τ năm 2. Tính suất sinh lợi theo phương pháp gộp lãi liên tục trong từng khoảng thời gian như sau: S i ui = ln S i −1 3. Tính độ lệch chuẩn, s , của ui´s s 4. Ước tính độ biến động lịch sử là: σ= ˆ τ Options, Futures, and Other Derivatives, 6th Edition, 13.10
- Bản chất của độ biến động Độ biến động khi thị trường mở cửa (nghĩa là khi tài sản đang được giao dịch) thường lớn hơn rất nhiều so với khi thị trường đóng cửa. Vì lý do này, khi định giá quyền ch ọn, th ời gian thường được tính bằng “ngày làm việc (trading days)” chứ không phải là ngày lịch. Options, Futures, and Other Derivatives, 6th Edition, 13.11
- Khái niệm về Black-Scholes trên tài sản cơ sở Giá quyền chọn và giá cổ phiếu cùng phụ thuộc vào tính không chắc chắn của tài sản cơ sở. Chúng ta lập một danh mục gồm cổ phiếu và quyền chọn, danh mục này có thể loại bỏ sự không chắc chắn kể trên. Danh mục trở thành phi rủi ro và ngay lập tức phải đạt được lãi suất phi rủi ro. Điều này dẫn tới phương trình vi phân Black- Scholes. Options, Futures, and Other Derivatives, 6th Edition, 13.12
- Kết quả của Phương trình vi phân Black- Scholes ∆S = µS ∆t + σS ∆z ∂ ƒ ∂ƒ ∂ 2ƒ 2 2 ∂ƒ ∆ƒ = µS + +½ 2 σ S ∆t + σS ∆z ∂S ∂t ∂S ∂S Chúng ta lập một danh mục gồm − 1 : sản phẩm phái sinh ∂ƒ + : cổ phiếu ∂S Options, Futures, and Other Derivatives, 6th Edition, 13.13
- Kết quả của Phương trình vi phân Black- Scholes tiếp theo Giá trị của danh mục Π duoc cho bởi ∂ƒ Π = −ƒ + S ∂S Thay đổi giá trị của danh mục trong khoảng thời gian ∆t được cho bởi ∂ƒ ∆Π = −∆ ƒ + ∆S ∂S Options, Futures, and Other Derivatives, 6th Edition, 13.14
- Kết quả của Phương trình vi phân Black- Scholes tiếp theo Lợi nhuận của danh mục phải là lãi suất phi rủi ro. Do vậy ∆Π = r Π∆t Chúng ta thay ∆f và ∆S vào những phương trình này để có được phương trình vi phân Black-Scholes: ∂ƒ ∂ƒ ∂ 2ƒ + rS + ½ σ 2S 2 = rƒ ∂t ∂S ∂S 2 Options, Futures, and Other Derivatives, 6th Edition, 13.15
- Phương trình vi phân Bất kỳ chứng khoán nào có giá phụ thuộc vào giá cổ phiếu sẽ thỏa mãn phương trình vi phân này. Chứng khoán đang được định giá này sẽ được xác định bởi các điều kiện giới hạn (boundary conditions) của phương trình vi phân nói trên. Trong hợp đồng kỳ hạn, điều kiện giới hạn là ƒ = S – K với t =T Đáp số của phương trình này là ƒ = S – K e–r (T – t ) Options, Futures, and Other Derivatives, 6th Edition, 13.16
- Các công thức The Black-Scholes (Xem các trang 295-297) c = S 0 N (d1 ) − K e − rT N (d 2 ) p = K e − rT N (− d 2 ) − S 0 N (− d1 ) ln(S 0 / K ) + (r + σ 2 / 2)T với d1 = σ T ln(S 0 / K ) + (r − σ 2 / 2)T d2 = = d1 − σ T σ T Options, Futures, and Other Derivatives, 6th Edition, 13.17
- Hàm N(x) N(x) là xác suất mà biến của nó được phân phối chuẩn có trung bình bằng 0 và độ lệch chuẩn bằng 1, nhỏ hơn x Xem các bảng ở cuối cuốn sách này. Options, Futures, and Other Derivatives, 6th Edition, 13.18
- Các thuộc tính của công thức Black- Scholes Khi S0 trở nên rất lớn thì c có xu hướng tiến tới S – Ke-rT và p có xu hướng tiến tới 0 Khi S0 trở nên rất nhỏ thì c có xu hướng tiến tới 0 và p có xu hướng tiến tới Ke-rT – S Options, Futures, and Other Derivatives, 6th Edition, 13.19
- Phương pháp định giá trung lập với rủi ro Biến µ không xuất hiện trong phương trình Black-Scholes Phương trình này không phụ thuộc vào những biến bị tác động bởi yếu tố thích rủi ro. Do vậy, phương trình vi phân này sẽ cho ra kết quả giống như trong thế giới không có rủi ro mặc dù nó đang ở trong thế giới thực Điều này dẫn tới nguyên lý định giá trung lập với rủi ro. Options, Futures, and Other Derivatives, 6th Edition, 13.20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Tài chính phái sinh: Chương 2 - Xác định giá hợp đồng kỳ hạn và hợp đồng giao sau
23 p | 525 | 99
-
Bài giảng Tài chính phái sinh: Chương 7 - Hợp đồng hoán đổi
29 p | 471 | 88
-
Bài giảng Tài chính phái sinh: Chương 10 - Các chiến lược kinh doanh liên quan đến quyền chọn
15 p | 308 | 63
-
Bài giảng Tài chính phái sinh: Chương 1 - Nhập môn
32 p | 245 | 59
-
Bài giảng Tài chính phái sinh: Chương 6 - Hợp đồng giao sau về lãi suất
25 p | 200 | 48
-
Bài giảng Tài chính phái sinh: Chương 8 - Cơ chế thị trường quyền chọn
21 p | 291 | 47
-
Bài giảng Tài chính phái sinh: Chương 11 - Cây nhị phân
22 p | 218 | 43
-
Bài giảng Tài chính phái sinh: Chương 15 - Các ký tự Hy lạp
22 p | 234 | 40
-
Bài giảng Tài chính phái sinh: Chương 4 - Lãi suất
27 p | 192 | 39
-
Bài giảng Tài chính phái sinh: Chương 16 - Dạng nụ cười của độ biến động
13 p | 146 | 36
-
Bài giảng Tài chính phái sinh: Chương 2 - Cơ chế vận hành thị trường hợp đồng giao sau
17 p | 174 | 36
-
Bài giảng Tài chính phái sinh: Chương 12 - Wiener Process và Itô Lemma
29 p | 250 | 36
-
Bài giảng Tài chính phái sinh: Chương 19 - Ước lượng độ biến động (rủi ro) và hệ số tương quan
26 p | 205 | 30
-
Bài giảng Tài chính phái sinh: Chương 1 - ThS. Vũ Hữu Thành
22 p | 167 | 30
-
Bài giảng Tài chính phái sinh: Chương 18 - Giá trị có rủi ro
41 p | 123 | 27
-
Bài giảng Tài chính phái sinh: Chương 6 - ThS. Vũ Hữu Thành
26 p | 101 | 22
-
Bài giảng Tài chính phái sinh: Chương 5 - ThS. Vũ Hữu Thành
21 p | 126 | 19
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn