intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Vật lý đại cương 2: Chương 4 - TS. Phạm Thị Hải Miền

Chia sẻ: Hứa Tung | Ngày: | Loại File: PDF | Số trang:16

45
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Vật lý đại cương 2: Chương 4 - TS. Phạm Thị Hải Miền có nội dung trình bày về: các tiên đề của thuyết tương đối hẹp, phép biến đổi Lorentz, các hệ quả của phép biến đổi Lorentz, động lực học tương đối. Mời các bạn cùng tham khảo chi tiết nội dung bài giảng.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Vật lý đại cương 2: Chương 4 - TS. Phạm Thị Hải Miền

  1. CHƢƠNG 4 THUYẾT TƢƠNG ĐỐI HẸP 1. Các tiên đề của thuyết tƣơng đối hẹp 2. Phép biến đổi Lorentz 3. Các hệ quả của phép biến đổi Lorentz 4. Động lực học tƣơng đối
  2. 1. CÁC TIÊN ĐỀ CỦA THUYẾT TƢƠNG ĐỐI HẸP Thuyết tương đối hẹp được xây dựng dựa trên hai tiên đề của Einstein: 1. Nguyên lý tƣơng đối: Mọi định luật vật lý đều giống nhau trong các hệ qui chiếu quán tính. 2. Nguyên lý về sự bất biến của vận tốc ánh sáng: Vận tốc ánh sáng trong chân không là như nhau đối với mọi hệ qui chiếu quán tính. c = 3.108 m/s
  3. Sự mâu thuẫn của phép biến đổi Galileo với thuyết tƣơng đối • Xét 2 HQC quán tính K và K’, trong đó K’ chuyển K K’ động với vận tốc v so với K theo phương x. • Một vật chuyển động theo ' phương x với vận tốc v x. so với K’. Vậy so với K vật có vận tốc:  '  vx  vx  v '   Nếu v  c, v x và v cùng chiều thì v x > c  Vô lý. ' x
  4. 2. PHÉP BIẾN ĐỔI LORENTZ Lorentz (v~c) 1 Galileo (v
  5. Galileo (v
  6. BÀI TẬP VÍ DỤ 1 Hai hạt chuyển động ngược chiều nhau dọc theo một đường thẳng với các tốc độ v1  0,65c và v2  0,85c đối với phòng thí nghiệm, với c là vận tốc ánh sáng trong chân không. Tìm tốc độ của hạt thứ nhất đối với hạt thứ hai. Hƣớng dẫn giải v 'x  v • Sử dụng công thức cộng vận tốc: vx  v 1  2 v 'x c • Xem phòng thí nghiệm như hệ K’, hạt thứ hai như hệ K    Hạt thứ nhất chuyển động với vận tốc vx '  v1 đối với hệ K’   Hệ K’ chuyển động với vận tốc v  v2 đối với hệ K     • Theo đề: v1  v2  vx '  v v1  v2 • Vận tốc hạt thứ nhất đối với hệ K: v1/2   0,97c v1v2 1 2 c
  7. 3. CÁC HỆ QUẢ CỦA PHÉP BIẾN ĐỔI LORENTZ a. Tính tƣơng đối của sự đồng thời. Quan hệ nhân quả. Giả sử trong hệ K có 2 biến cố A và B xảy ra đồng thời vào thời điểm t tại 2 vị trí x1 và x2, nghĩa là t  t1  t2  0 . Thời điểm xảy ra biến cố được ghi nhận trong hệ K’ sẽ là: v v t  2 x1 v t  2 x2 2 x1  x 2  t '1  c , t '2  c  t'  t'2 t'1  c v2 v2 v2 1 2 1 2 1 2 c c c Vì x1  x2  t   0  Sự đồng thời có tính tƣơng đối.
  8. Quan hệ nhân quả • Trong hệ K: gọi biến cố A (x1, t1) là nguyên nhân và biến cố B (x2, t2) là kết quả. x 2  x1 - vận tốc truyền tác dụng từ nguyên u t 2  t1 nhân đến kết quả • Trong hệ K’: v v  v  t '2  t '1   (t2  2 x2 )   (t1  2 x1 )   (t  t )   2 1 c 2 2 1  ( x  x ) c c  v  v   (t2  t1 )  2 u (t2  t1 )    (1  2 u )  t2  t1   c  c  Nếu t2 > t1 thì t’2 > t’1  Thứ tự của các biến cố có quan hệ nhân quả không thay đổi trong mọi hệ qui chiếu quán tính.
  9. b. Tính tƣơng đối của không gian (Sự co lại của độ dài) • Xét một thanh nằm yên trong hệ K’ dọc theo trục x’ có chiều dài: l o = x2 ’ - x1 ’ • Trong hệ K thanh có chiều dài l = x2 – x1 • Từ phép biến đổi Lorentz ta có: x2  x1 v2 x '2  x '1   l  lo 1 2 v 2 c 1 2 c  Độ dài dọc theo phƣơng chuyển động của thanh đo đƣợc trong hệ mà thanh chuyển động ngắn hơn độ dài của nó đo đƣợc trong hệ mà nó đứng yên.
  10. BÀI TẬP VÍ DỤ 2 Một tam giác đều đứng yên trong có diện tích là S0 . Trong HQC K chuyển động với vận tốc v đối với tam giác và dọc theo một trong các đường trung bình của nó, diện tích tam giác bằng bao nhiêu? Hƣớng dẫn giải • Diện tích tam giác khi đứng yên: 1 S0  AH .BC 2 • Giả sử tam giác chuyển động dọc theo cạnh BC  cạnh BC bị co lại, còn đường cao AH không đổi độ dài. Diện tích S: 1 1 v2 S  AH .B ' C '  AH .l0 1  2 2 2 c  v2 S  S0 1 2 c
  11. c. Tính tƣơng đối của thời gian (Sự giãn ra của thời gian) ' ' t t • Xét một biến cố xảy ra trong hệ K’ từ thời điểm 1 đến thời điểm 2 Khoảng thời gian xảy ra biến cố trong hệ K’ là: t '  t2'  t1' • Trong hệ K, khoảng thời gian xảy ra biến cố là: t  t2  t1 v v t' 2  2 x' t'1  2 x' t ' c c t   t ' t  t 2  t 1    v 2 v2 v2 1 2 1 2 1 2 c c c  Khoảng thời gian riêng nhỏ hơn khoảng thời gian ghi đƣợc trong hệ qui chiếu mà hạt chuyển động. (Thời gian riêng là thời gian đo bởi đồng hồ gắn liền với vật chuyển động)
  12. BÀI TẬP VÍ DỤ 3 Đồng hồ trong HQC K chuyển động rất nhanh so với trái đất cứ sau 5 s (đo theo đồng hồ trên trái đất) nó bị chậm 0,1 s. Tìm vận tốc của K. Hƣớng dẫn giải • Khoảng thời gian đồng hồ trên trái đất đo được: t  5s • Khoảng thời gian đồng hồ trên HQC K đo được: t0  4,9s • Theo thuyết tương đối: t0 t   v  0, 6.108 m / s v2 1 2 c
  13. d. Sự bất biến của khoảng không – thời gian Một biến cố trong không gian 4 chiều được xác định bởi 4 tọa độ x, y, z, t và người ta định nghĩa khoảng không – thời gian giữa 2 biến cố như sau: s  ct  x  y  z 2 2 2 2 2  s  s' 2 2  Khoảng không – thời gian là một đại lƣợng bất biến
  14. 4. ĐỘNG LỰC HỌC TƢƠNG ĐỐI a. Khối lƣợng tƣơng đối tính. • Xét vật trong hệ K’ có khối lượng m0 gọi là khối lƣợng nghỉ. • Trong hệ K vật có khối lượng: mo m v2 1 2 c b. Phƣơng trình cơ bản của chuyển động chất điểm.   d  mv  F dt
  15. c. Năng lƣợng tƣơng đối tính. • Năng lượng của một vật đứng yên gọi là năng lƣợng nghỉ: Eo  mo c 2 • Năng lượng của một vật chuyển động: E  mc 2   mov • Động lượng của vật: P  v2 1 2 c • Động năng của vật: Wd  (m  mo )c 2 • Liên hệ giữa P và E: E 2  mo 2 4 c  p 2 2 c
  16. BÀI TẬP VÍ DỤ 4 Một electron chuyển động với tốc độ v=0,5c. Tìm tỉ số động năng và năng lượng nghỉ của electron. Hƣớng dẫn giải • Động năng electron: m0 1 Wd  (m  mo )c  ( 2  m0 )c  m0c ( 2 2  1) 2 2 v v 1 2 1 2 c c • Tỉ số động năng và năng lượng nghỉ: 1 2 m0 c (  1) v2 1 2 Wd c 1  (  1)  0,155 E0 m0 c 2 v 2 1 2 c
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2