intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập toán cao cấp I - GVHD Phạm Thị Ngũ

Chia sẻ: Nguyễn Lâm | Ngày: | Loại File: DOC | Số trang:18

2.045
lượt xem
900
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về bài tập môn toán cao cấp A1 dành cho sinh viên hệ cao đẳng - đại học tham khảo học tập củng cố kiến thức môn học. Tài liệu hay và bổ ích. GVHD: Phạm Thị Ngũ.

Chủ đề:
Lưu

Nội dung Text: Bài tập toán cao cấp I - GVHD Phạm Thị Ngũ

  1. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ Chương I: ĐAI SỐ TUYÊN TINH ̣ ́ ́ Bai tâp 1: Cho 2 ma trân A và B ̀ ̣ ̣ 2 1 − 1 2 1 1 A = 3 0 − 1   B = 1 2 1    1 1 0    1 0 0    ́ Tinh: a) At – 2BA + 3Bt b) 2AB - 3BA + 2ABt ́ c) Cho f(x) = x3 + 3x – 2 Tinh f(A) , f(B) ́ Ta co: 2 3 1 2 1 1 8 3 − 3 1 0 1 B = 1 2 0 BA = 9 2 − 3 A = t  ; t   ;    − 1 − 1 0   1 1 0   2 1 − 1   − 16 − 6 6 6 3 3  4 4 3 − 2BA =  − 18 − 4 6   ; 3B = 3 6 0 t   ; AB = 5 3 3    − 4 − 2 2   3 3 0    3 3 2    8 8 6 − 2 0 0  2AB = 10 6 6   ;  0 −2 0  −2=     6 6 4  0  0 − 2   − 24 − 9 9  4 3 2 6 3 3 − 3BA = − 27 − 6 9   ; AB = 5 2 3  t  ; 3B = 3 6 3    − 6 − 9 3   3 3 1     3 0 0    8 6 4 6 1 − 3  12 3 − 7  2 AB = 10 4 6 t   ; AA = 5 2 − 3   ; A = 13 2 − 7  3    6 6 2   5 1 − 2    11 3 − 6   6 3 − 3 6 4 3 19 14 10 3A = 9 0 − 3   ; BB = 5 5 3   ; B = 18 15 10 3   3 3 0    2 1 1   6 4 3    − 8 0 10  − 8 5 19   A − 2 BA + 3B = − 14 2 7  t t   ; 2 AB − 3BA + 2 AB = − 7 4 21 t   −2 0 2    6 9 9   ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 1/18
  2. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ 16 6 − 10 23 17 13 f ( A) = A + 3 A − 2 = 22 0 − 10 3   ; f ( B ) = B + 3B − 2 =  21 19 13 3   14 6 − 8    9 4 1   ̀ ̣ ́ Bai tâp 2: Tinh A-1B + ABt + At +2 khi 1 0 − 1  1 1 0 a) A = 3 1  2  ; B =  0 1 1   0 − 1 1     − 1 1 0   0 1 2 2 0 1  b) A = 3 − 1 1    ; B = 1 − 1 2    1 2 1   1 1 − 1   − 1 0 2 0 2 1  2 1 A= 3 B = 3 − 1 1  c)  ;    − 1 − 1 − 2   0 − 2 0    CÂU A: 1 0 − 1  1 1 0 A = 3 1  2 ; B =  0 1 1   0 − 1 1     − 1 1 0   Vì A = 6 ⇒ ∃A −1 ̀ ́ Tim A-1 theo 2 cach: ́  Cach 1:  1 2 2 3 1+ 3 3 1 C11 = (−1)1+1  =3 ; C12 = (−1)1+ 2   = −3 ; C13 = ( −1) 0 = −3 − 1 1  1 0  − 1   0 − 1 − 1 1 2 + 3 1 0 C 21 = (−1) 2+1  ; =1 C 22 = ( −1) 2 + 2   = 1 ; C 23 = (−1) 0 =1 − 1 1  1 0  − 1  0 − 1 − 1 1 3+ 3 1 0 C 31 = (−1) 3+1   =1 ; C 32 = (−1) 3+ 2   = −5 ; C 33 = (−1) 3 =1 1 2  2 3  1   3 1 1    3 − 3 − 3 3 1 1  6 6 6  1 3 1 5 ⇒ C = 1 1  1  → A −1 = − 3 1 − 5 = −     6 6 − 6  6 1 − 5 1    − 3 1 1   3 1 1    − 6 6 6    ́  Cach 2 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 2/18
  3. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ 1 0 − 1 1 0 0 h1 → h1 1 0 − 1 1 0 0 h1 → h1 1 0 − 1 1 0 0 3 1  − 3h + h → h 0 1 2 0 1 0 h → h 5 − 3 1 0 2 0 1 5 − 3 1 0   1 2 2 2   0 − 1 1 0 0 1 h3 → h3   0 − 1 1  0 0 1 h2 + h3 → h3 0 0 6 − 3 1 1    1  3 1 1  h3 + h1 → h1 1 0 0 3 1 1 1 0 0 6 6   h → h1 6 6 6 6 6 1  5 h2 → h2 0 1 5 − 3 1 0  − 5h + h → h 0 1 0 − 3 1 −   3 1 1 3 2 2  6 6 6 1 0 0 1 −  h3 → h3 0 0 1 − 3 1 1  h3 → h3   6 6 6 6   6 6 6   ́ Ta co:  2 5 1  6 6 1 3 0 1 0 − 1  1 − 1 − 1  2 6 7 1 A t =  0 1 − 1 ; B t = 1 1 1  ; AB t =  4      3 − 2 ; A −1 B =   −   6 6 6 − 1 2 1    0 1 0    − 1 0 − 1    − 4 1 1  6 −  6 6   26 17 5  6 −  6 6  26 29 17  Vây A B + AB + A + 2 =  6 −  −1 t t ̣ 6 6  − 16 11 13   6  6 6   CÂU B: 0 1 2 2 0 1  A = 3 − 1 1    ; B = 1 − 1 2    1 2 1   1 1 − 1   Vì A = 12 ⇒ ∃A −1 ̀ ́ Tim A-1 theo 2 cach: ́  Cach 1: − 1 1 3 1 3 − 1 C11 = (−1)1+1  = −3 ; C12 = (−1)1+ 2  = −2 ; C13 = ( −1)1+3  =7 2 1 1 1  1 2 1 2 0 2 0 1 C 21 = (−1) 2+1  =3 ; C 22 = ( −1) 2 + 2  = −2 ; C 23 = (−1) 2+3  =1 2 1 0 1 1 2 1 2 0 2 0 1 C 31 = (−1) 3+1  =3 ; C 32 = (−1) 3+ 2  =6 ; C 33 = (−1) 3+3  = −3 − 1 1  3 2  3 − 1  3 3 3  − − 3 − 2 7  − 3 3 3   12 12 12  1  2 2 6  ⇒ C =  3 − 2 1  → A −1 = − 2 − 2 6  = −   −  12    12 12 12  3  6 − 3  7  1 − 3  7  1 3 −   12  12 12   ́  Cach 2 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 3/18
  4. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ 0 1 2 1 0 0 h1 ↔ h3 1 2 1 0 0 1 h1 → h1 1 2 1 0 0 1 3 − 1 1 0 1 0 h → h 3 − 1 1 0 1 0 − 3h + h → h 0 − 7 − 2 0 1 − 3   2 2  1 2 2  1 2 1 0 0 1 h1 ↔ h3 0 1 2 1 0 0 h3 → h3     0 1  2 1 0 0    h1 → h1 1 2 1 0 0 1 2 1 0 0 1  h1 → h1 1  1  2 1 3  2 1 3  − h2 → h2 0 1 0 −  h2 → h2 0 1 0 −  7 0 1 7 7 7  7 7 7   2 1 0 0  h3 − h2 → h3   12 1 3 h →h 3 3 0 0 1 −    7 7 7    3 2 1  1 0 0 h1 → h1 1 2 1 0 0 1  − 2h + h → h  7 7 7  1  3  3  2 1 2 1 2 1 h2 → h2 0 1 0 −  h2 → h2 0 1 0 −   7 7 7   7 7 7  7 7 1 3 h3 → h3 0 0 1 7 1 3 h3 → h3 0 0 1 −  −  12   12 12 12     12 12 12    3 2 1  3  3 3 3  h1 → h1 1 0 0  − 7 h + h1 → h1 1 0 0 − − 7 7 7 12 12 12  2  2 2 6  3  2 2 6  − h3 + h2 → h2 0 1 0 − −  h2 → h2 0 1 0 − −  7  12 12 12   12 12 12  0 0 7 1 3  h3 → h3 0 0 7 1 3 h3 → h3 1 − 1 −    12 12 12    12 7 7 ́ Ta co:    0 3 1  2 1 1  2 3 − 1 0 0 0  8  A t = 1 − 1 2 ; B t = 0 − 1 1  ; AB t = 7 6 1  ; A −1 B = 0       − 1  12  2 1 1    1 2 − 1   3 1 2    1 − 4 1   12     4 6 0  92  Vây ̣ A −1 B + AB t + A t + 2 = 8 2  12  6 20 6  12    CÂU C: − 1 0 2 0 2 1  2 1 A= 3 B = 3 − 1 1   ;    − 1 − 1 − 2   0 − 2 0    Vì A = −3 ⇒ ∃A −1 ̀ ́ Tim A-1 theo 2 cach: ́  Cach 1: 1 3 2 3  2 1 C11 = (−1) 1+1   =1 ; C12 = (−1)1+ 2   =1 ; C13 = (−1) 1+3   = −1  − 1 − 2  − 1 − 2 − 1 − 1 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 4/18
  5. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ 0 2  − 1 2  − 1 0  C 21 = (−1) 2 +1   = −2 ; C 22 = (−1) 2 + 2  =4 ; C 23 = (−1) 2 + 3   = −1  − 1 − 2 − 1 − 2 − 1 − 1 0 2  − 1 2  − 1 0 C 31 = (−1) 3+1   = −2 ; C 32 = (−1) 3+ 2  =7 ; C 33 = (−1) 3+3   = −1 1 3  2 3   2 1  1 2 2  − 3   1 1 − 1  1 − 2 − 2  3 3 1 1 4 7 ⇒ C = − 2 4 − 1 → A −1 = −  1    4 7  = −   3 −3 −  3 3 − 2 7 − 1   − 1 − 1 − 1   1   1 1   3  3 3   ́  Cach 2 − 1 0 2 1 0 0 − h1 → h1 1 0 − 2 − 1 0 0 2 1  2h + h → h 0 1 3 0 1 0 1 7 2 1 0  2 2   − 1 − 1 − 2 0 0 1 2h3 + h2 ↔ h3 0 − 1 − 1 0 1 2       h1 → h1 1 0 − 2 − 1 0 0 h1 → h1 1 0 − 2 − 1 0 0 h2 → h2 0 1 7 2 1 0 h2 → h2 0 1 7 2 1 0    1 1 1  h2 + h3 → h3 0 0 6 2 2 2 1  h → h 0 0 1  3 3 3 3 3 6    1 2 2  h1 → h1 1 0 − 2 − 1 0 0  2h + h → h 1 0 0 − 3 3 3  1  7 7 3 1 1 4 1 4 − 7h3 + h2 → h2 0 1 0 − − −  h 2 → h2 0 1 0 − − −   3 3 3  3 3 3 h3 → h3 0 0 1 1 1 1  h3 → h3 0 0 1 1 1 1    3 3 3     3 3 3   ́ Ta co:  6 8 1   3 − − 1 2 − 1  0 3 0   2 −1 0  3 3   4 16 5 A t =  0 1 − 1 ; B t = 2 − 1 − 2 ; AB t =  5      8 − 2 ; A −1 B = −  −   3 3 3  2 3 − 2   1 1  0   − 4 − 4 2     1 1 2   3 −  3 3    5 2  5 − − 3 3  11 49 14  ̣ Vây A −1 B + AB t + A t + 2 =  −   3 3 3 − 5 − 4 8   3  3 3  ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 5/18
  6. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ Bai tâp 3: Giai cac hệ phương trinh sau ̀ ̣ ̉ ́ ̀  4 x1 + 2 x2 − x3 =8  3x1 + x2 + 3x4 =5  1.   x1 − x2 + 4 x3 − 2 x4 = −1  2 x1 + 3x2 + x3 + x4  =8  − 2 x1 + 2 x2 + 4 x3 =0  x1 + 3 x2 − x4 =2  2.  4 x1 + 3x2 − 6 x3 + 2 x4 =1   x1 − x2 − 2 x3 =0  − x1 + x3 − 2 x4 + x5 =7  2 x1 − 2 x3 + 3 x4 =8  3.  3 x1 − 3 x2 + 6 x4 − 3 x5 = 10  x1 + x2 − x3 + x4 − x5  =0 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 6/18
  7. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ CÂU 1  4 x1 + 2 x2 − x3 =8  3x1 + x2 + 3x4 =5    x1 − x2 + 4 x3 − 2 x4 = −1  2 x1 + 3x2 + x3 + x4  =8 Ta có 4 2 − 1 0 8  h3 → h1 1 − 1 4 − 2 − 1 3 1 0 3 5  h4 → h2 2 3 1 1 8 A=     1 − 1 4 − 2 − 1 h2 → h3 3 1 0 3 5     2 3 1 1 8  h1 → h4 4 2 − 1 0 8 h1 → h1 1 − 1 4 −2 − 1 h1 → h1 1 − 1 4 − 2 − 1 0 5 0 5 − 7 h2 → h2 −7 5 10  − 2h1 + h2 → h2  5 10  4   − h + h → h 0 0 − 22  5 0 − 3h1 + h3 → h3 0 4 − 12 9 8 5 2 3 3  5    6  11  − 4h1 + h4 → h4 0 6 − 17 8 12  − h + h → h 0 0 1 − 0 4  4 3 4  2  h1 → h1 1 − 1 4 − 2 − 1 0 5 −7 5 10  h2 → h2   22 h3 → h3 0 0 − 5 0  5  5  192  h3 + h4 → h4 0 0 0 − 0 22   44  ⇒ r(A) = r( A ) = 4 vây hệ phương trinh có nghiêm duy nhât. ̣ ̀ ̣ ́ Tư đó ta có hệ phương trinh đã cho tương đương vơi hê: ̀ ̣  x1 − x 2 + 4 x3 − 2 x 4 = −1  5x − 7 x + 5x = 10 x1 = 1  2 3 4 x = 2  22  2 (1) ⇔  − x3 + 5 x 4 =0 ⇔  5  x3 = 0  192 x4 = 0   − x4 =0  44 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 7/18
  8. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ CÂU 2  − 2 x1 + 2 x2 + 4 x3 =0  x1 + 3 x2 − x4 =2   4 x1 + 3x2 − 6 x3 + 2 x4 =1   x1 − x2 − 2 x3 =0 ́ Ta co: − 2 2 4 0 0 h4 → h1  1 − 1 − 2 0 0 1 3 0 −1 2 h2 → h2  1 3 0 −1 2 A=    4 3 −6 2 1  h3 → h3  4 3 −6 2 1      1 −1 − 2 0 0 h1 → h4 − 2 2 4 0 0 h1 → h1 1 − 1 − 2 0 0 h1 → h1 1 −1 − 2 0 0  0 2 −1 2  − h1 + h2 → h2 0 4 2 − 1 2 h → h2  4   7 2 3 15 5 − 4h1 + h3 → h3 0 7 2 2 1  − h2 + h3 → h3 0 0 − −    4  2 4 2 2h1 + h4 → h4 0 0 0 0 0 h4 → h4 0  0 0 0 0   ⇒ r(A) = r( A ) = 3 vây hệ phương trinh có vô số nghiêm. ̣ ̀ ̣ Tư đó ta có hệ phương trinh đã cho tương đương vơi hê: ̀ ̣   x1 − x 2 − 2 x3 = 0  (2) ⇔ 4 x 2 + 2 x3 − x 4 = 2 (*)  3 15 5  − x3 + x 4 = −  2 4 2 ̣ ̀ ́ ̣ ̀ ́ ́ Chon x4 lam biên phu; x1, x2, x3 lam biên chinh. Cho x4 = α vơi α là tham số tuỳ ́ y.  x1 − x 2 − 2 x3 =0  4 x + 2 x − x  x1 = α + 2  2 3 4 =2    4 (*) ⇔  3 15 5 ⇔  x 2 = −4α −  − 2 x3 + 4 x 4 =− 2  3   5 5   x4 =α  x3 = 2 α + 3  Vây hệ phương trinh có vô số nghiêm có nghiêm tông quat la: ̣ ̀ ̣ ̣ ̉ ́ ̀  4 5 5   α + 2;−4α − ; α + ; α  vơi α tuỳ ý  3 2 3  ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 8/18
  9. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ CÂU 3:  − x1 + x3 − 2 x4 + x5 =7  2 x1 − 2 x3 + 3 x4 =8   3 x1 − 3 x2 + 6 x4 − 3 x5 = 10  x1 + x2 − x3 + x4 − x5  =0 ́ Ta co: − 1 0 1 − 2 1 7  h1 → h1 − 1 0 1 −2 1 7 2 0 −2 3 0 8  2h1 + h2 → h2  0 0 0 −1 2 22 A=      3 −3 0 6 − 3 10 3h1 + h3 → h3  0 − 3 3 0 0 31     1 1 − 1 1 − 1 0  h1 + h4 → h4  0 1 0 −1 0 7 h1 → h1 − 1 0 1 − 2 1 7  − 1 1 0 − 2 1 7 h3 → h2  0 − 3 3 0 0 31  31   c 2 ↔ c3  0 3 − 3 0 0  h2 → h3  0 0 0 − 1 2 22  0 0 0 −1 2 22     h4 → h4  0 1 0 −1 0 7   0 0 1 −1 0 7 h1 → h1 − 1 1 0 −2 1 7  h2 → h2  0 3 − 3 0 0 31   h4 → h3  0 0 1 −1 0 7    h3 → h4  0 0 0 − 1 2 22 ⇒ r(A) = r( A ) = 4 vây hệ phương trinh có vô số nghiêm. ̣ ̀ ̣ Tư đó ta có hệ phương trinh đã cho tương đương vơi hê: ̀ ̣ − x1 + x3 − 2 x 4 + x5 =0   − 3 x 2 + 3 x3 = 31 (3) ⇔  (**)  x2 − x4 =7   − x 4 + 2 x5 = 22 ̣ ̀ ́ ̣ ̀ ́ ́ Chon x5 lam biên phu; x1, x2, x3, x4 lam biên chinh. Cho x5 = β vơi β là tham số tuỳ ý − x1 + x3 − 2 x 4 + x5 =0  97   x1 = 3 − 2 β  − 3 x 2 + 3 x3 = 31    x = 2β − 15 (**) ⇔  x2 − x4 =7 ⇔ 2  − x 4 + 2 x5 = 22  x = 2 β − 14   3 3   x5 =β  x = 2β − 22  4 Vây hệ phương trinh có vô số nghiêm có nghiêm tông quat la: ̣ ̀ ̣ ̣ ̉ ́ ̀  97 14   − 2 β ;2 β − 15;2 β − ;2 β − 22; β  Vơi β là tham số tuỳ y. ́  3 3  ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 9/18
  10. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ Bai tâp 4: Biên luân số nghiêm cua hệ phương trinh theo a ̀ ̣ ̣ ̣ ̣ ̉ ̀ (a + 1)x + y + z = 1  x + (a + 1)y + z = a + 1  x + y + (a + 1)z = (a + 1) 2 ́ Ta co: a + 1 1 1 1  h2 → h1  1 a +1 1 a +1   1 A= a +1 1 a +1  1  h → h a + 1 1 1 1  2    1  1 a + 1 (a + 1 ) 2  h3 → h3  1   1 a + 1 (a + 1 )2   h1 → h1 1 a +1 1 a +1  1 1 a +1 a +1  0 − a 2 − 2a − a − a 2 − 2a C ↔ C 0 − a − a 2 − 2a − a 2 − 2a  − (a + 1 )h1 + h2 → h2   2 3  − h1 + h3 → h3 0  −a a a +a  2  0 a  −a a2 + a   h1 → h1 1 1 a +1 a +1  h2 → h2  0 − a − a 2 − 2a − a 2 − 2a   h2 + h3 → h3 0 0 − a 2 − 3a  −a   ̣ ̣ Biên luân:  Nêu (−a − 3a) = 0 ⇔ (a = 0) ∨ (a = −3) 2 ́ ̀  Khi a = 0 thi: 1 1 1 1 A = 0 0 0 0 ⇒ r ( A) = r ( A) = 1 ⇒ Hệ phương trinh đã cho có vô số nghiêm.   ̀ ̣ 0 0 0 0    Vơi nghiêm tông quat có dang: ( 1 − α − β ; α ; β ) vơi α , β là cac tham số tuỳ y. ̣ ̉ ́ ̣ ́ ́  Khi a = -3 1 1 − 2 − 2 A = 0 3 − 3 − 3  ⇒ r ( A) = 2 ≠ r ( A) = 3 ⇒ Hệ phương trinh vô nghiêm.   ̀ ̣ 0 0 0  3    Nêu (−a − 3a) ≠ 0 ⇔ (a ≠ 0) và (a ≠ −3) , khi đó ta có 2 ́ h1 → h1   1 1 a +1 a +1  1 1 a + 1 a +1  0 − a − a 2 − 2 a − a 2 − 2 a  1 A=  − h2 → h2 0 1 a + 2 a+2  a  a  0 0 − a 2 − 3a  −a   1 0 0 1  − 2 h3 → h3  a + 3a  2 a + 3a Do đó hệ phương trinh đã cho tương đương vơi hệ phương trinh sau: ̀ ̀  3a + 7  x = − a + 3  x + (a + 1) y + z = a + 1    1  ( a + 2) y + z = a + 2 ⇔  y =   a+3 a  y= 2 z = a + 3  a + 3a   ́ ̣ Kêt luân:  Khi a = 0 : Hệ có vô số nghiêm có dang (1 − α − β ; α ; β ) vơi α , β là cac tham số ̣ ̣ ́ tuỳ y. ́  Khi a = -3 : Hệ vô nghiêm. ̣ ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 10/18
  11. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ 3a + 7 1  Khi a ≠ 0 và a ≠ −3 : Hệ có nghiêm duy nhât ( − ̣ ́ , ,a + 3) a+3 a + 3 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 11/18
  12. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ Chương II: HAM MÔT BIÊN THỰC ̀ ̣ ́ Bai tâp 1:Tinh cac giơi han sau: ̀ ̣ ́ ́ ̣  1   2  1. lim   tan 2 x + Cos − tan x   2. lim  Sin2 x − Cotx  π   π x→   x→ 2 2 π tan x − Sinx Cos x 3. lim 4. 2 x→0 x3 lim x→1 1− x 1 + xSinx − Cos 2 x 1+ x −1 lim 5. lim 1 − x→0 3 1+ x 6. x →0 tan 2 x 2 Cosx − 3 Cosx Cos 2 x − 1 7. lim Sin 2 x 8. lim x→0 1 − x2 −1 9. x→0 2 6 x +12 1  2x2 + 3  10. lim  1 + tan x  Sinx lim  2 x 2 + 10   x→+∞      x→0  1 + Sinx  11. x −1  x2 + 4x − 1  2 lim  x 2 + 7 x − 1   x→+∞    ̀ Bai 1: 1 1   ( tan 2 x + − tan x).( tan 2 x + + tan x) 1 Cosx Cosx lim  tan 2 x +  = lim − tan x  x→  π Cosx  x→π 1 2 2 ( tan 2 x + + tan x) Cosx 1 tan 2 x + − tan 2 x = lim Cosx π 1 2 ( tan x + + tan x) x→ 2 Cosx 1 = lim π 1 2 Cosx.( tan x + + tan x) x→ 2 Cosx 1 = lim π Sin 2 x 1 Sinx x→ 2 Cosx.( 2 + + ) Cos x Cosx Cosx 1 1 lim π 2 Sin x 1 Sinx = lim π Sin x + Cosx Sinx 2 x→ 2 Cosx.( 2 + + ) x→ 2 Cosx.( + ) Cos x Cosx Cosx Cos 2 x Cosx 1 = lim x→ π ( Sin 2 x + Cosx + Sinx) 2 1 1 = = 1+ 0 +1 2 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 12/18
  13. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ  1  1 ̣ Vây lim   tan 2 x + Cosx − tan x  =  2 x→ π   2 ̀ Bai 2:  2   2 Cosx  lim  Sin2 x − Cotx  = lim  2Sinx.Cosx − Sinx  π   π   x→ x→ 2 2  1 Cosx  = lim  −  π  Sinx.Cosx Sinx  x→ 2 1 − Cos 2 x = lim x→ π Sinx.Cosx 2 Sin 2 x Sinx = lim = lim x→ π Sinx.Cosx x → π Cosx 2 2 = lim tgx = ∞ π x→ 2 ̀ Bai 3: Sinx − Sinx tan x − Sinx Sinx − Sinx.Cosx lim x3 = lim Cosx 3 = lim x →0 x→0 x x →0 x 3 .Cosx x2 x. Sinx(1 − Cosx ) = lim 3 = lim 3 2 x→0 x .Cosx x → 0 x .Cosx 1 1 = lim = x → 0 2.Cosx 2 ̀ Bai 4: π π π Cos x − Sin x π 2 = lim x →1 1− x lim 2 − 1 2 = 2 x →1 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 13/18
  14. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ ̀ Bai 5: 1 + x −1 ( 1 + x − 1).( 1 + x + 1).(1 + 3 1 + x + 3 (1 + x) 2 ) lim 1 − 3 1 + x X →0 .( 1 + x + 1).(1 − 3 1 + x ).(1 + 3 1 + x + 3 (1 + x)2 ) X →0 = lim (1 + x − 1).(1 + 3 1 + x + 3 (1 + x) 2 ) = lim X →0 (1 − 1 − x).( 1 + x + 1) x.(1 + 3 1 + x + 3 (1 + x) 2 ) = lim X →0 − x.( 1 + x + 1) (1 + 3 1 + x + 3 (1 + x ) 2 ) = lim − X →0 ( 1 + x + 1) 3 =− 2 ̀ Bai 6: 1 + xSinx − Cos 2 x ( 1 + xSinx − Cos 2 x ).( 1 + xSinx + Cos 2 x ) lim = lim X →0 tan 2 x 2 X →0 x 2 ( tan 2 . 1 + xSinx + Cos 2 x ) 1 + xSinx − Cos 2 x = lim X →0 x ( tan 2 . 1 + xSinx + Cos 2 x 2 ) xSinx + 2Sin 2 x = lim X →0 x ( tan 2 . 1 + xSinx + Cos 2 x 2 ) 1 ( xSinx + 2 Sin 2 x) = lim .lim X →0 ( 1 + xSinx + Cos 2 x X → 0 ) x tan 2 . 2 x ( xSinx + 2 Sin 2 x).Cos 2 1 2 = lim ( 1 + xSinx + Cos 2 x lim ) . x X →0 X →0 Sin 2 2   1 x xSinx Sin 2 x  = lim Cos 2  lim − 2 lim  2 X →0 2  X → 0 Sin 2 x X →0 2 x  Sin    2 2   1  x2 x2  = .1. lim − 2 lim  2  X →0 ( x )2 X →0 x 2 ( )    2 2  1 1 1 1 = .( − ) = − 2 4 2 8 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 14/18
  15. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ ̀ Bai 7 : Cosx − 3 Cosx Cosx − 3 Cos 2 x 1 Cosx − 3 Cos 2 x lim = lim = lim x→0 Sin 2 x x→0 Sin x.( Cosx + Cosx ) 2 3 2 x→0 Sin 2 x 1 Cos 3 x − Cos 2 x 2 lim Sin 2 x.(Cos 2 x + 2.Cosx.3 Cos 2 x + 3 Cos 4 x = x→0 1 1 − Cosx − Cos 2 x = lim ( . ) 2 x→0 Sin 2 x. Cos 2 x + 2.Cosx.3 Cos 2 x + 3 Cos 4 x x2 1 1 1 = .( − ). lim 22 = − 2 4 x→0 x 16 Bài 8: Cos 2 x − 1 (Cos 2 x − 1).( 1 − x 2 + 1) (1 − Cos 2 x).( 1 − x 2 + 1) lim x→0 1 − x2 −1 = lim x→0 − x2 = lim x→0 x2 2Sin 2 x.( 1 − x 2 + 1) Sin 2 x = lim = 2 lim 2 .( 1 − x 2 + 1) x→0 x2 x→0 x x2 = 2 lim .( 1 − x 2 + 1) = 4 x→0 x2 ̀ Bai 9: −7 .( 6 x 2 +12 ) 6 x 2 +12 2 6 x +12  − 2 x 2 +10  2 x 2 +10  2x2 + 3   7   7  7  lim  2 x 2 + 10   x→+∞    = lim 1 − 2 x→+∞   2 x + 10  = lim 1 − 2 x→+∞   2 x + 10       −7.( 6 x 2 +12 ) lim 2 x 2 +10 =e x→+∞ − 7.(6 x + 12) 2  18  lim x→+∞ 2 x + 10 2 = 7. lim  − 3 + 2 x→+∞   = −21 2 x + 10  6 x 2 +12  2x2 + 3  Vây lim  2 ̣    = e −21 x→+∞  2 x + 10  ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 15/18
  16. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ ̀ Bai 10: 1 1  1 + tan x  Sinx  1 + tan x + Sinx − Sinx  Sinx lim  1 + Sinx  = lim  X →0   X →0  1 + Sinx   tanx − Sinx 1 .  1 + Sinx  1 + sinx Sinx  tan x − Sinx  tanx − Sinx  = lim 1 +  X → 0  1 + Sinx     tanx - Sinx 1 . 1+sinx Sinx =e Sinx − Sinx  tanx − Sinx 1  Cosx lim 1 + sinx . Sinx  = X →0   lim Sinx.(1 + Sinx) X →0 Sinx − SinxCosx = lim Sinx.Cosx.(1 + Sinx) X →0 1 − Cosx = lim Cosx.(1 + Sinx) = 0 X →0 1 Vây lim  1 + tan x  = e0 = 1 Sinx ̣   X → 0  1 + Sinx  ̀ Bai 11: − . 3x x−1 x −1 x −1 − x +7 x−1  x +7 x−1 2 2 2  x2 + 4x −1  2  3x  2  3x  3x  lim  x 2 + 7 x − 1   x→+∞    = lim 1 − 2 x→+∞   = lim 1 − 2 x + 7x −1 x→+∞   x + 7x −1       3x x −1  − .  lim  2    =e x → +∞  x + 7 x −1 2  ́ Tinh :  1   3( x − x)  2 3 x −x 3  1− 2  lim  −  = − lim 2 = − lim  x =−3 x →+∞ 2( x 2 + 7 x − 1)  2 x→+∞ x + 7 x − 1 2 x→+∞ 1 + 7 − 1  2      x x2  x −1 Vây lim  x 2 + 4 x − 1  2 ̣ 2 1     = x→+∞  x + 7 x − 1  e3 ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 16/18
  17. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ ̀ ̣ ́ ́ ́ Bai tâp 2: Tinh cac tich phân sau: +∞ e dx dx 1. ∫ 2. ∫ x. ln x 1x. 1 + x 2 1 2 −1 dx 1 + x2 3. ∫ 3 4. ∫ x3 dx 1 x −1 −∞ ̉ Giai: ̀ Bai 1. +∞ b dx dx ∫ x. 1 1 + x2 = lim ∫ b→+∞ 1 x. 1 + x 2 ̣ Đăt t = 1 + x 2 ⇒ t 2 = 1 + x 2 ⇔ 2tdt = 2 xdx ⇔ tdt = xdx x = b → t = 1 + b2  ̉ ̣ Đôi cân  x = 1 → t = 2  b b 1+ b 2 1+ b 2 dx xdx tdt dt lim ∫ x. b → +∞ 1 1+ x 2 = lim ∫ b → +∞ 1 x . 1+ x 2 2 = lim b → +∞ ∫ t.(t 2 − 1) lim = b → +∞ ∫ t −1 2 2 2 2 2 1+ b 1+ b 1 dt 1 dt = lim 2 b → +∞ ∫ − lim t − 1 2 b → +∞ ∫ t +1 2 2 1+ b 2 1 1 t −1 = lim ( ln(t − 1) − ln(t + 1) ) 1+ b 2 = lim ln 2 b → +∞ 2 2 b → +∞ t + 1 2    ln 1 + b − 1 − ln 2 − 1  = +∞ 2 1 2 lim  = b → +∞  1 + b2 + 1 2 + 1 +∞ dx ⇒ ∫ x. 1 1+ x 2 Hôi tụ ̣ ̀ Bai 2. e e dx dx ∫ 1 = lim ∫ x. ln x ε → 0 + 1+ ε x. ln x 1 1 dx 1 Đăt t = ̣ ⇒ dt = − 2 dx ⇒ = − 2 dt ln x x. ln x x t  x = e → t =1  ̉ ̣ Đôi cân:  1  x = 1 + ε → t = ln(1 + ε )  ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 17/18
  18. ̀ ̣ ́ ́ Bai tâp toan cao câp I GVHD: Phan Thị Ngũ e 1 dx 1 lim ∫ ∫ − t dt = lim ( − ln t ) 1 = x. ln x lim 1 ε→0+ 1+ε ε →0+ 1 ε →0+ 1+ε 1+ε  1  = lim −  ln 1 − ln =0 ε →0+  1+ ε  e dx ̣ Vây ∫ x. ln x 1 Hôi tụ ̣ Bài 3: 2 2 2 2 dx dx dx dx ∫ 1 = lim ∫ 3 = lim ∫ × lim ∫ 2 x 3 − 1 ε → 0+ 1+ ε x − 1 ε → −∞ 1+ ε x − 1 ε → 0+ 1+ ε x + 2 x + 1 2 2 dx dx ∫ = lim (ln 1 − ln ε ) × lim ∫ 2 2 = lim ln( x + 1) 1+ ε × lim ε → 0+ ε → 0+ 1+ ε x 2 + 2 x + 1 ε → 0+ ε → 0+ 1+ ε x + 2 x + 1 =∞ ̀ Bai 4. −1 1 + x2 −1 1 + x2  −1 1 −1 2 x  ∫ x3 −∞ dx = lim ∫ 3 dx = lim  ∫ 3 dx + ∫ 3 dx  b→− b ∞ x ∞  b→−  b x b x    −1 1 −1 1   1 −1 −1  = lim  ∫ 3 dx + ∫ dx  = lim  − 2  + ln b  b→−  b x ∞ b x  b → −∞  2 x   b    1 1  1 = lim  − + 2 + ln1 − ln b  = − b→−  ∞ 2 2b  2 −1 1+ x2 ̣ Vây − ∫∞ x 3 dx Hôi tụ ̣ ̃ Nguyên Phan Thanh Lâm MSV: 071250510319 Trang 18/18
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2