intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo: Luật học perceptron

Chia sẻ: Sdada Trung | Ngày: | Loại File: PPT | Số trang:78

508
lượt xem
116
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Một trong những câu hỏi chúng tôi nêu ra trong chương 3 là: "Làm thế nào để chúng ta xác định ma trận trọng số và hệ số hiệu chỉnh cho các mạng perceptron với nhiều đầu vào, trường hợp không thể hình dung ranh giới quyết định?" Trong chương này, chúng tôi sẽ mô tả một thuật toán cho phép đào tạo mạng perceptron, để giải quyết vấn đề phân loại.

Chủ đề:
Lưu

Nội dung Text: Báo cáo: Luật học perceptron

  1. LUẬT HỌC PERCEPTRON Nguyễn Thành Trung Lớp :THB – K53 Khoa: Công nghệ thông tin ĐH Nông nghiệp Hà Nội
  2. NỘI DUNG • Mục tiêu • Lý thuyết và ví dụ • Luât học • Kiến trúc Perceptron Perceptron một noron Perceptron nhiều noron • Luật học Perceptron Kiểm tra vấn đề Xây dựng Luật học Luật học thống nhất Huấn luyện mạng perceptron nhiều noron • Tóm tắt kết quả • Bài tập mẫu • Kết luận
  3. • Mục tiêu Một trong những câu hỏi chúng tôi nêu ra trong chương 3 là: "Làm thế nào để chúng ta xác định ma trận trọng số và hệ số hiệu chỉnh cho các mạng perceptron với nhiều đầu vào, trường hợp không thể hình dung ranh giới quyết định?" Trong chương này, chúng tôi sẽ mô tả một thuật toán cho phép đào tạo mạng perceptron, để giải quyết vấn đề phân loại. Chúng tôi sẽ bắt đầu bằng cách giải thích một luật học và sau đó sẽ phát triển các luật học perceptron. Chúng tôi sẽ kết thúc bằng việc thảo luận những lợi thế và hạn chế của mạng perceptron đơn lớp. Thảo luận này sẽ dẫn chúng ta đến các chương sau.
  4. • Lý thuyết và ví dụ Trong năm 1943, Warren McCulloch và Walter Pitts giới thiệu một trong những neuron nhân tạo đầu tiên. Các tính năng chính của mô hình neuron của họ là sự tổng hợp có trọng số của tín hiệu đầu vào được so sánh với ngưỡng để tìm đầu ra của neuron. Khi tổng lớn hơn hoặc bằng ngưỡng, đầu ra là 1. Khi tổng nhỏ hơn ngưỡng, đầu ra là 0. Họ tiếp tục cho thấy mạng neuron có thể tính toán số học hoặc hàm logic. Không giống như các mạng sinh học, các thông số mạng của chúng được thiết kế mà không có phương pháp đào tạo có sẵn. Tuy nhiên, mối quan hệ giữa sinh học và máy tính kỹ thuật số tạo ra rất nhiều sự quan tâm.
  5. Trong cuối những năm 1950, Frank Rosenblatt và một số nhà nghiên cứu khác phát triển một lớp học về mạng neuron là perceptrons. Các neuron trong mạng này cũng tương tự như của McCulloch và Pitts. Đóng góp quan trọng của Rosenblatt là giới thiệu một luật học để huấn luyện các mạng perceptron để giải quyết vấn đề nhận dạng mẫu. Ông đã chứng minh rằng luật học của mình sẽ luôn luôn hội tụ về các trọng số mạng chính xác, nếu trọng số tồn tại để giải quyết vấn đề. Sự huấn luyện đã được đơn giản và tự động.
  6. Tuy nhiên, mạng perceptron có nhiều hạn chế. Những hạn chế này đã được công bố trong cuốn Perceptrons của Marvin Minsky và Seymour Papert. Họ đã chứng minh rằng mạng perceptron đã không có khả năng thực hiện một số chức năng cơ bản. Mãi đến những năm 1980 những hạn chế này mới được khắc phục với các mạng perceptron cải tiến (nhiều lớp) và những luật học liên quan. Chúng tôi sẽ nói về những cải tiến này trong các chương 11 và 12.
  7. Ngày nay các perceptron vẫn còn được xem như là một mạng quan trọng. Nó vẫn còn là một mạng nhanh và đáng tin cậy cho các vấn đề mà nó có thể giải quyết. Ngoài ra, sự hiểu biết về hoạt động của perceptron sẽ tạo cơ sở tốt cho sự hiểu biết các mạng lưới phức tạp hơn. Như vậy, mạng perceptron, và các luật học liên quan , cũng có giá trị thảo luận ở đây. Trong phần còn lại của chương này chúng tôi sẽ xác định ý nghĩa của luật học, giải thích các mạng perceptron và luật học, và thảo luận về những hạn chế của mạng perceptron .
  8. • Luật học Luật học là một thủ tục để sửa đổi các trọng số và hệ số hiệu chỉnh của mạng neuron. (Thủ tục này cũng có thể được gọi là một thuật toán huấn luyện.) Mục đích của luật học là huấn luyện mạng để thực hiện một số nhiệm vụ. Có nhiều loại luật học huấn luyện mạng neuron. Chúng gồm ba loại chính: luật học có giám sát, luật học không giám sát và luật học gia tăng (hoặc phân loại). Trong luật học có giám sát, luật học đưa ra một tập hợp các mẫu có quy tắc và tương thích với mạng:
  9. pq là một đầu vào mạng và tq tương ứng với đầu ra chính xác (mục tiêu). Khi các đầu vào được áp dụng vào mạng, các kết quả đầu ra mạng được so sánh với các mục tiêu. Luật học sau đó được sử dụng để điều chỉnh trọng số và hệ số hiệu chỉnh của mạng để dịch chuyển đầu ra gần với các mục tiêu hơn. Luật học perceptron được xếp vào loại luật học có giám sát. Luật học gia tăng tương tự luật học có giám sát, ngoại trừ việc, thay vì đưa ra các đầu ra chính xác cho mỗi đầu vào mạng, thuật toán chỉ cho một lớp. Lớp là thước đo cho sự hoạt động của mạng trên một chuỗi đầu vào. Đây là loại luật học hiện nay ít phổ biến hơn so với luật học có giám sát. Nó dường như là phù hợp nhất để kiểm soát các ứng dụng hệ thống.
  10. Luật học không giám sát, trọng số và hệ số hiệu chỉnh được sửa đổi để đáp ứng với đầu vào mạng. Có mục tiêu không là đầu ra có sẵn. Điều này dường như không thực tế. Làm thế nào bạn có thể huấn luyện một mạng nếu bạn không biết nó phải làm gì? Hầu hết các thuật toán thực hiện sự hoạt động phân cụm. Chúng được luyện để phân loại các mô hình đầu vào thành một số hữu hạn các lớp. Điều này đặc biệt hữu ích trong các ứng dụng như là lượng tử hóa vector. Chúng ta sẽ thấy trong các chương 13-16 một số thuật toán không giám sát.
  11. • Kiến trúc Perceptron. Các mạng nơron mà trong mỗi nơron chỉ được liên kết với tất cả các nơron ở lớp kế tiếp và tất cả các mối liên kết chỉ được xây dựng từ trái sang phải được gọi là mạng nhiều lớp truyền thẳng (perceptrons) Đầu ra của mạng được cho bởi:
  12. Để thuận tiện cho sự xem xét các phần tử riêng lẻ của vector đầu ra. Hãy xem xét ma trận trọng số: Chúng tôi sẽ xác định một vector gồm các phần tử của hàng thứ i của W:
  13. ⇒ Ma trận trọng số trở thành: ⇒ Phần tử thứ i của vector đầu ra mạng: Mà hàm truyền harlim được định nghĩa như sau:
  14. Vì vậy, tích trong hàng thứ i của ma trận trọng số với vecto đầu vào lớn hơn hoặc bằng - bi , thì đầu ra sẽ là 1, trái lại đầu ra sẽ là 0. Vì thế mỗi neuron trong mạng chia không gian đầu vào thành hai khu vực. Nó rất hữu ích để điều tra các ranh giới giữa các khu vực này. Chúng tôi sẽ bắt đầu với các trường hợp đơn giản của một perceptron đơn lớp với hai đầu vào.
  15. Perceptron đơn lớp Chúng ta hãy xem xét một perceptron hai đầu vào: Đầu ra của mạng này được xác định bởi
  16. Ranh giới phân loại các vector đầu vào được xác định bởi: Cụ thể hơn, chúng ta hãy chỉ định các giá trị của trọng số và hệ số hiệu chỉnh là: Ranh giới quyết định sẽ là:
  17. Điều này xác định 1 đường trong không gian đầu vào. Trên một bên của đường đầu ra sẽ là 0 ; trên đường và phía bên kia của đường đầu ra sẽ là 1. Để vẽ đường, chúng ta có thể tìm những điểm cắt các trục p1 và p2 . Để tìm điểm cắt p2 ta đặt p1 = 0: Để tìm điểm cắt p1, ta đặt p2 = 0: Để tìm ra khu vực mà đầu ra tương ứng là 1, chúng ta chỉ cần kiểm tra một điểm. Đối với các đầu vào p = [2 0]T, đầu ra của mạng sẽ là :
  18. Do đó, đầu ra của mạng sẽ là 1 đối với khu vực trên và bên phải của ranh giới quyết định. Khu vực này được chỉ định bởi các khu vực bóng mờ trong hình 4.3: Lưu ý: Ranh giới luôn luôn là trực giao với 1w , và được xác định bởi:
  19. Đối với tất cả các điểm nằm trên ranh giới, tích trong của các vector đầu vào với các vector trọng số là như nhau. Ngoài ra, bất kỳ vector trong khu vực bóng mờ của hình 4.3 sẽ có tích trong lớn hơn -b, và vector trong khu vực không có bóng mờ sẽ có tích trong ít hơn -b . Vì vậy vector trọng số 1w sẽ luôn luôn hướng về phía khu vực nơi mà đầu ra của mạng là 1. Sau khi chúng tôi đã chọn một vector trọng số với định hướng góc chính xác, hệ số hiệu chỉnh có thể được tính bằng cách chọn một điểm trên ranh giới và thỏa mãn Eq. (4,15).
  20. Chúng ta sẽ áp dụng một trong những khái niệm thiết kế mạng perceptron để thực hiện một hàm logic đơn giản: các cổng AND. Các cặp đầu vào/mục tiêu cho các cổng AND là: Hình dưới minh họa cho vấn đề bằng đồ thị. Mỗi vector đầu vào sẽ được dán nhãn theo mục tiêu. Các vòng tròn đen chỉ ra rằng mục tiêu là 1, và các vòng tròn trắng cho mục tiêu là 0.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2