intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Câu hỏi minh họa môn Toán cao cấp C2

Chia sẻ: Lê Thị Kim Ngân | Ngày: | Loại File: PDF | Số trang:13

346
lượt xem
28
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mời các bạn cùng tham khảo các câu hỏi minh họa môn Toán cao cấp C2, tài liệu gồm 90 câu hỏi bài tập trắc nghiệm, giúp các hệ thống lại kiến thức được tốt hơn.

Chủ đề:
Lưu

Nội dung Text: Câu hỏi minh họa môn Toán cao cấp C2

CÂU HỎI MINH HỌA MÔN TOÁN CAO CẤP C2<br /> (Nội dung chỉ mang tính chất tham khảo) Mã đề cương chi tiết: TCDB024<br /> 1. Cho hàm số y = ln ( x 2 − x + 1) . Tập xác định của hàm số: A. [ 0; +∞ ) C. R 2. Cho hàm số y = A. ( −2; 2 ) C. ( −∞; −2] ∪ [ 2; +∞ )<br /> x<br /> <br /> B. ( −∞;0 ) D. [1; +∞ )<br /> 4<br /> <br /> x − 2 . Tập xác định của hàm số:<br /> B. ( −∞; −2] D. [ 2; +∞ ) B. ( 3; +∞ ) D. [3; +∞ )<br /> <br /> 3. Cho hàm số y = lg ( 2 − 8 ) . Tập xác định của hàm số: A. ( −∞;3] C. ( −∞;3)<br /> <br /> 4. Cho hàm số y = x 2 − 2 x 2 − 1 + x − 3 + 2 x − 4 . Tập xác định của hàm số: A. [1; +∞ ) B. ( −∞; −1] ∪ [ 4; +∞ ) C. ( −∞; −1] A. [ −2; +∞ ) C. [ ln 2; +∞ ) 6. Cho hàm số y =<br /> 1  A.  ;1 2  1  C.  ; +∞  2 <br /> <br /> D. [ 4; +∞ ) B. e 2 ; +∞ )  1  D.  2 ; +∞  e <br /> <br /> 5. Cho hàm số y = ln x + 2 . Tập xác định của hàm số:<br /> <br /> x + 2 x − 1 . Tập xác định của hàm số: 1− x 1  B.  ;1 2  1  D.  ;1 2  x2 − 1 : x−2 B. [1; +∞ )<br /> D. (1; 2 ) ∪ ( 2; +∞ )<br /> <br /> 7. Tập xác định của hàm số y = x − 1 + A. R C. [1; 2 ) ∪ ( 2; +∞ ) x2 − 3 bằng: x → −1 x 3 + 2 A. 2 8. lim<br /> <br /> B. 1<br /> <br /> C. -2 9. lim A. 2 C. −<br /> 3 5 − 3 x 5 + 7 x 3 − 11 bằng: x →−∞ x 5 + x 4 − 3x 2x2 − 3 bằng: x6 + 5x5<br /> <br /> D. −<br /> <br /> 3 2<br /> <br /> x →+∞<br /> <br /> B. 0 D. -3<br /> <br /> 10. lim A. 0 C. 3<br /> <br /> B. -3 D. − ∞<br /> <br /> 11. lim<br /> x →1<br /> <br /> 2x −1 bằng: (x − 1)2<br /> <br /> A. 2 C. + ∞ 12. lim A. 2 C. 1<br /> x→−∞<br /> <br /> B. -1 D. − ∞<br /> <br /> 4x2 − x + 1 bằng: x +1<br /> <br /> B. -2 D. -1<br /> <br /> 13. Giới hạn lim<br /> x →1<br /> <br /> A. 6 C. 5 14. lim<br /> x→3<br /> <br /> x3 + x 2 + x − 3 bằng: x −1<br /> <br /> B. 7 D. 8<br /> <br /> x2 bằng: x3 − x − 6 B. 2 D.<br /> 2 2<br /> <br /> A.<br /> <br /> 1 2<br /> <br /> C. 3 x 2 + 3x − 4 15. lim bằng: x→−4 x2 + 4x 5 A. 4 5 C. − 4 − 2x5 + x4 − 3 16. lim bằng: x →−∞ 3x 2 − 7 A. − ∞ C. 0 x −1 17. lim bằng: x→+∞ x2 − 1<br /> <br /> B. 1 D. -1<br /> <br /> B. -2 D. + ∞<br /> <br /> A. 1 C. 0 18. lim<br /> x →0<br /> <br /> B. -1 D. + ∞<br /> 1− x −1 bằng: x<br /> <br /> A.<br /> <br /> 1 2 C. + ∞<br /> x →−1<br /> <br /> B. − D. 0 x +x bằng: x + 3x + 2<br /> 2 2<br /> <br /> 1 2<br /> <br /> 19. lim A. 2 C. -1<br /> <br /> 2 3 D. 0<br /> <br /> B. x 2 + 13 x + 30<br /> <br /> 20. lim+<br /> x →−3<br /> <br /> (x + 3)(x 2 + 5)<br /> <br /> bằng:<br /> <br /> A. 2 C. -2 21. lim<br /> x →7<br /> <br /> B. 0 D.<br /> 3− x + 2 bằng: x 2 − 2 x − 35 1 12 1 D. 52 2 15<br /> <br /> A. − C. 0<br /> <br /> 1 72<br /> <br /> B. −<br /> <br /> 22. lim A. 0 C. + ∞<br /> <br /> x →−∞<br /> <br /> ( 5x<br /> <br /> 2<br /> <br /> + 2 x + x 5 bằng:<br /> 5 5 D. − ∞<br /> <br /> )<br /> <br /> B. −<br /> <br /> 23. Tìm lim A. 10 C. ∞ 24. Tìm lim<br /> x →1<br /> <br /> 10 x 4 3 x + x + 1 x →∞ x 5 + x 4 + x + 2<br /> <br /> B. 0 1 D. 2<br /> <br /> A. 0 C. 2 25. Tìm lim<br /> x →1<br /> <br /> x2 −1 x2 − 4x + 3<br /> <br /> B. -1 D. ∞<br /> <br /> x −1 x2 −1<br /> <br /> A. 0<br /> <br /> B. 1<br /> <br /> C.<br /> <br /> 1 2<br /> 3 x →1<br /> <br /> D.<br /> x −1 x2 −1<br /> <br /> 1 4<br /> <br /> 26. Tìm lim A. 0 C.<br /> 1 3<br /> x→ −3<br /> <br /> 1 2 1 D. 6<br /> <br /> B.<br /> <br /> 27. lim 3<br /> 3 2 3 C. − 4<br /> <br /> x 4 + 27 x bằng: 4 x 2 − 36<br /> 3 4 3 D. 2<br /> <br /> A. −<br /> <br /> B.<br /> <br /> 3<br /> <br /> 28. lim A. C. 0<br /> 2 2<br /> <br /> x3 + 2x 2 + 1 2x2 + 1<br /> <br /> x→−∞<br /> <br /> bằng:<br /> <br /> B. 1 D. −<br /> <br /> 2 2 29. Cho hàm số f(x) xác định trên đoạn [ a; b] . Trong các mệnh đề sau, mệnh đề nào đúng?<br /> <br /> A. Nếu hàm số f(x) liên tục trên đoạn [ a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 không có<br /> nghiệm trong khoảng ( a; b ) .<br /> <br /> B. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng ( a; b ) . C. Nếu phương trình f(x) = 0 có nghiệm trong khoảng ( a; b ) thì hàm số f(x) phải liên tục trên<br /> khoảng ( a; b ) .<br /> <br /> D. Nếu hàm số f(x) liên tục, tăng trên đoạn [ a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0<br /> không thể có nghiệm trong khoảng ( a; b ) .<br /> <br /> 30. Trong các khẳng định sau đây, khẳng định nào đúng. Trên khoảng ( −2; 2 ) phương trình<br /> 2 x3 − 6 x + 1 = 0 : A. Vô nghiệm B. Có đúng 1 nghiệm D. Có đúng 2 nghiệm C. Có đúng 3 nghiệm 3 31. Cho phương trình: − 4 x + 4 x − 1 = 0 (1). Mệnh đề sai là: A. Hàm số f ( x ) = −4 x 3 + 4 x − 1 liên tục trên R.<br /> <br /> B. Phương trình (1) không có nghiệm trên khoảng ( −∞;1) . C. Phương trình (1) có nghiệm trên khoảng ( −2;0 ) .<br /> <br /> 1  D. Phương trình (1) có ít nhất hai nghiệm trên khoảng  −3;  . 2  4 2 32. Cho phương trình: 2 x − 5 x + x + 1 = 0 (1). Trong các mệnh đề sau, mệnh đề nào đúng: A. Phương trình (1) không có nghiệm trong khoảng ( −1;1) .<br /> <br /> B. Phương trình (1) không có nghiệm trong khoảng ( −2;0 ) . C. Phương trình (1) chỉ có một nghiệm trong khoảng ( −2;1) . D. Phương trình (1) có ít nhất hai nghiệm trong khoảng ( 0; 2 ) .<br />  sin x , x≠0  33. Cho hàm số y =  x . Với giá trị nào của A thì hàm số trên liên tục tại x = 0 ? A , x = 0  A. 0 B. 1 C. 2 D. 3  cos x , x≠0  34. Cho hàm số y =  x . Với giá trị nào của A thì hàm số trên liên tục tại x = 0 ? A , x=0  A. 0 B. 1 C. 2 D. Không tồn tại A để hàm số liên tục  x −8 khi x > 8  35. Cho hàm số f ( x ) =  3 x − 2 . Để hàm số liên tục tại x = 8 , giá trị của a là: ax + 4 khi x ≤ 8  A. 1 B. 2 C. 4 D. 3 2  x + 2x khi x ≠ 0  36. Cho hàm số f ( x ) =  x 2 . Mệnh đề nào sau đây là mệnh đề đúng? a khi x = 0 <br /> <br /> A. Nếu a = −2 thì hàm số f ( x ) liên tục tại điểm x = 0 . B. Nếu a = 1 thì hàm số f ( x ) liên tục tại điểm x = 0 . C. Không có giá trị nào của a để hàm số liên tục tại x = 0 . D. Với mọi a hàm số đều liên tục tại x = 0 .  e 2 x + e −2 x − 2 , x≠0  37. Cho hàm số y =  . Với giá trị nào của A thì hàm số trên liên tục tại 2x2 2 A + 1 , x=0  x =0? 1 3 A. B. − 2 2 C. 1 D. 2<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2