Đề khảo sát chọn đội tuyển HSG 12 môn Toán năm học 2019-2020 - Trường THPT Lê Quý Đôn - Đống Đa
lượt xem 5
download
Đề khảo sát chọn đội tuyển HSG 12 môn Toán năm học 2019-2020 - Trường THPT Lê Quý Đôn - Đống Đa là tài liệu ôn tập môn Toán dành cho các thầy cô giáo và các em học sinh giỏi môn Toán năm học lớp 12 giúp các bạn học sinh vừa ôn tập lại kiến thức vừa trau dồi các kỹ năng làm bài sao cho đạt hiệu quả cao nhất.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề khảo sát chọn đội tuyển HSG 12 môn Toán năm học 2019-2020 - Trường THPT Lê Quý Đôn - Đống Đa
- SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HSG 12 TRƯỜNG THPT LÊ QUÝ ĐÔN - ĐỐNG ĐA MÔN: TOÁN (Đề gồm 01 trang) NĂM HỌC: 2019 - 2020 Thời gian làm bài 180 phút Câu 1 (4 điểm). Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm A, B, C bằng 3. Câu 2 (6 điểm). a. Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x . x3 y 2 x 2 2 xy 1 b. Giải hệ phương trình: . 2 x 3 x y 2 0 Câu 3 (4 điểm). 2020 u1 Cho dãy số un xác định bởi 2019 , n * . 2u u 2 2u n 1 n n 1 1 1 Đặt S n ... . Tính lim Sn . u1 2 u2 2 un 2 Câu 4 (4 điểm). Cho hình chóp tam giác đều S . ABC có cạnh đáy bằng 1. Gọi M , N là hai điểm thay đổi lần lượt thuộc các cạnh AB , AC sao cho mặt phẳng SMN luôn vuông góc với mặt phẳng ABC . Đặt AM x, AN y. a. Chứng minh rằng x y 3 xy. b. Tìm x , y để SMN có diện tích bé nhất, lớn nhất. Câu 5 (2 điểm). Cho a, b, c là các số thực dương thoả mãn a b c 3 . Tìm giá trị lớn nhất của biểu thức. 2 abc abc P 3 . 3 ab bc ca 6 1 a 1 b 1 c ----------------------- HẾT ----------------------- Thí sinh không sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
- ĐÁP ÁN ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HỌC SINH GIỎI 12 CÂU Ý NỘI DUNG ĐIỂM Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm 4 A, B, C bằng 3. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi phương trình x3 3 x 2 mx 2 m 0 (1) có 3 nghiệm phân biệt. 1,0 x3 3 x 2 mx 2 m 0 ( x 1)( x 2 2 x m 2) 0 Phương trình (1) có 3 nghiệm phân biệt x 2 2 x m 2 0 (2) có hai nghiệm phân ' 3 m 0 1,0 biệt khác 1 m 3 (*) . 1 1 2 m 2 0 Gọi x1 , x2 là nghiệm của phương trình (2), suy ra tổng hệ số góc tiếp tuyến của đồ thị hàm số tại giao điểm A, B, C là: 1,5 y '(1) y '( x1 ) y '( x2 ) 3( x1 x2 ) 2 6 x1 x2 6( x1 x2 ) 3m 3 9 3m Tổng HSG của các tiếp tuyến bằng 3 9 3m 3 m 2 (t/m đk (*)). 0.5 ĐS: m 2 Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x a 1,0 cos2x = 2 sin 2x.cosx - sin2x 2 sin x - sin2x 2 2cosx - 2 2cos x 1 sin 2x 2cosx -1 2 s inx 2cosx -1 2 2 2cosx -1 1,0 2 2cosx +1 2cosx -1 2cosx -1 sin 2x - 2 s inx +2 1 0.5 cosx = 2 1 2 s inx + cosx 2sinx.cosx - 1 = 0 2 + (1) x k 2 4 0.5 + (2) x k x k 2 , 4 4 Kết luận phương trình có 3 họ nghiệm : ………..
- x3 y 2 x 2 2 xy 1 Giải hệ phương trình: . 2 b x 3 x y 2 3 x 2 2 x x y 1 Viết lại hệ: 2 x 2 x x y 2 1,0 Đặt u x 2 2 x, v x y . Dễ có: u 1 . 0.5 u.v 1 Hệ trở thành: u v 2 u 1 Suy ra: v 1 0.5 x 2 2 x 1 Ta có x y 1 0.5 x 1 y 0 0.5 2020 u1 Cho dãy số un xác định bởi: 2019 , n * 2u u 2 2u n 1 n n 4 1 1 1 Đặt S n ... . Tính: lim Sn . u1 2 u2 2 un 2 Ta chứng minh un 1, n * (1) bằng phương pháp qui nạp toán học. 3 2020 1,0 Với n 1, u1 1 (1) đúng với n 1 . 2019 Giả sử (1) đúng với n k (k 1) ta có uk 1 gtqn . Ta phải chứng minh (1) đúng với n k 1 tức là phải chứng minh uk 1 1 . uk2 2uk u 2 2(uk 1) uk2 1 Thật vậy uk 1 1 1 k 0 uk 1 1 0 uk 1 1. 2 2 2 2 Theo nguyên lý qui nạp toán học ta có un 1, n * Mặt khác un 1 un un2 un 0, n * vì dãy số un 1 nên dãy số un là dãy số tăng.
- Với mọi k N*, ta có : 2 1 (u 2) uk 1 1 1 1 2uk 1 uk (uk 2) k uk (uk 2) uk 1 uk (uk 2) uk 1 uk uk 2 uk 1 1,0 1 1 1 1 1 Sn uk 2 uk uk 1 u1 un 1 Ta chứng minh dãy số un là dãy số không bị chặn. Giả sử phản chứng dãy số (un) bị chặn . Do dãy số un là dãy tăng (cmt) nên ta có dãy un tăng và bị chặn thì dãy số un có giới hạn hữu hạn. Giả sử lim un a . Vì un 1 1,0 Nên ta có a 1 . Từ định nghĩa 2un 1 un2 2un . Chuyển qua giới hạn ta có: 2a = a2 + 2a a = 0. Mâu thuẫn với a ≥1. Vậy giả sử sai, suy ra dãy un không bị chặn trên . do un là dãy tăng nên 1 1 1 1 2019 1,0 lim un lim 0 lim S n lim ( ) un u1 un 1 u1 2020 S 4 M A B O H N C Chứng minh x y 3 xy Kẻ SO MN , O MN do SMN ABC SO ABC 1,0 a. Do hình chóp S . ABC là hình chóp đều nên O là tâm đương tròn ngoại tiếp tam giác ABC . Gọi H là trung điểm của BC .Và O là trọng tâm của tam giác ABC .
- AB AC 1 1 3 Ta có AB AC 2. AH AM AN 2 AH . AM AN 2 AO . AM AN x y 2 4 Vì M AB, N AC 1,0 x. AM y. AN 3 xy. AO . Do M , N , O thẳng hàng nên x y 3 xy. (đpcm). 1 1 S SMN SO.MN SSMN nhỏ nhất khi MN nhỏ nhất và SSMN SO.MN SSMN 2 2 lớn nhất khi MN lớn nhất 2 2 Ta có MN 2 x 2 y 2 2 xy.cos600 x 2 y 2 xy x y 3 xy 9 xy 3 xy 1,0 Từ giả thiết ta có 0 x; y 1 4 Từ (1) ta có 3 xy x y 2 xy xy 9 0.5 1 x 1 y 1 0 xy 1 x y xy 1 3 xy xy 2 4 1 Đặt t = xy, t ; MN 2 9t 2 3t 9 2 4 1 Lập bảng biến thiên của hàm số f t 9t 2 3t ; t ; ta được 9 2 4 2 MN nhỏ nhất khi t khi x y 9 3 x 1 1 1 x MN lớn nhất khi t khi 1 hoặc 2 0,5 2 y 2 y 1 Cho a, b, c là các số thực dương thoả mãn a b c 3 . Chứng minh rằng: 2 abc abc 3 1 3 ab bc ca 6 1 a 1 b 1 c 2 2 abc abc Đặt : P 3 3 ab bc ca 6 1 a 1 b 1 c 0.5
- 2 Áp dụng bất đẳng thức: x y z 3 xy yz zx x, y, z 0.5 Với a, b, c 0 ta có: 5 2 ab bc ca 3abc a b c 9abc 0 ab bc ca 3 abc 3 Ta có: 1 a 1 b 1 c 1 3 abc a, b, c 0. Thật vậy: 1 a 1 b 1 c 1 a b c ab bc ca abc 3 2 1 3 3 abc 3 3 abc abc 1 3 abc 3 2 abc abc Khi đó: P 3 1 abc 3 1 abc 6 6 abc t 3 abc t 2 , abc t 3 . 0.5 Đặt: 3 abc Vì a, b, c 0 nên 0 abc 1 0 t 1 3 2 t2 1 3 Xét hàm số f (t ) t , t 0; 1 3 1 t 3 1 t 2 6 2t 2 2t t2 t 1 t2 0.5 f '(t) 2t . 2 2 (1 t 3 ) 2 (1 t 2 ) 2 2 3 2 (1 t ) (1 t ) 2 (1 t )(1 t 5 ) t2 2t. 0, t (0;1] (1 t 2 ) 2 .(1 t 3 ) 2 2 Suy ra f (t ) đồng biến trên f (t ) trên (0;1] ta có f (t ) f (1) 1, t (0;1] . 2 abc abc 3 1 3 ab bc ca 6 1 a 1 b 1 c 0.5 Dấu ‘=’ xảy ra khi a b c 1 . Vậy MaxP 1 khi a b c 1 Lưu ý: Học sinh giải cách khác mà đúng vẫn cho điểm tối đa
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi KSCL đội tuyển HSG môn Tin học lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
7 p | 368 | 39
-
ĐỀ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2009 - 2010 Môn thi: Vật lý 9
5 p | 395 | 35
-
Đề thi KSCL đội tuyển HSG môn Lịch sử lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
10 p | 247 | 17
-
Đề thi chọn đội tuyển Quốc gia môn Sinh học năm 2022-2023 có đáp án (Vòng 1) - Sở GD&ĐT Quảng Bình
17 p | 17 | 6
-
Đề chọn đội tuyển VN thi Olympic toán 2012
2 p | 67 | 5
-
ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HỌC SINH GIỎI LỚP 12 NĂM HỌC 2010-2011 - ĐỀ SỐ 1
5 p | 95 | 4
-
Đề thi chọn đội tuyển HSG dự thi quốc gia môn Toán 12 năm 2020-2021 - Sở GD&ĐT Tiền Giang
2 p | 68 | 4
-
Đề thi chọn đội tuyển HSG dự thi cấp tỉnh môn Toán 12 năm 2020-2021 - Trường THPT chuyên Bến Tre
1 p | 55 | 4
-
Đề thi chọn đội tuyển dự thi học sinh giỏi quốc gia lớp 12 THPT năm học 2019 – 2020 môn Toán - Sở GD&ĐT Bến Tre
1 p | 30 | 4
-
Đề thi khảo sát chọn đội tuyển HSG môn Ngữ văn khối THPT năm 2022-2023 có đáp án - Trường THPT chuyên Nguyễn Trãi, Hải Dương
6 p | 11 | 3
-
Đề thi khảo sát chọn đội tuyển HSG môn Tiếng Pháp khối THPT năm 2022-2023 có đáp án - Trường THPT chuyên Nguyễn Trãi, Hải Dương
16 p | 15 | 3
-
Đề thi khảo sát chọn đội tuyển HSG môn Địa lí khối THPT năm 2022-2023 có đáp án - Trường THPT chuyên Nguyễn Trãi, Hải Dương
6 p | 9 | 3
-
Đề thi khảo sát chọn đội tuyển HSG môn Tiếng Nga khối THPT năm 2022-2023 có đáp án - Trường THPT chuyên Nguyễn Trãi, Hải Dương
18 p | 11 | 3
-
Đề thi khảo sát môn Tiếng Pháp khối THPT năm 2022-2023 có đáp án - Trường THPT chuyên Nguyễn Trãi, Hải Dương
16 p | 13 | 3
-
Đề thi khảo sát chọn đội tuyển học sinh giỏi môn Ngữ văn lớp 12 năm học 2015-2016 – Trường THPT Lam Kinh (Lần 3)
4 p | 37 | 2
-
Đề thi chọn đội tuyển HSG dự thi quốc gia môn Toán 12 năm 2020-2021 - Sở GD&ĐT Đắk Lắk (Ngày thi thứ hai)
1 p | 37 | 2
-
Đề khảo sát chọn đội tuyển HSG môn Toán 12 năm 2019-2020 - Trường THPT Lê Quý Đôn
7 p | 53 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn