YOMEDIA
ADSENSE
ĐỀ OLYMPIC TOÁN SINH VIÊN 2008 môn đại số
183
lượt xem 24
download
lượt xem 24
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Đề thi Olympic sinh viên toàn quốc năm 2008do hội toán học Việt Nam tổ chức, đây là một sân chơi lớn để sinh viên có dịp gặp gỡ, trao đổi, giao lưu và thể hiện khả năng học toán, làm toán của mình.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ OLYMPIC TOÁN SINH VIÊN 2008 môn đại số
- H I TOÁN H C VI T NAM OLYMPIC TOÁN SINH VIÊN 2008 Đ thi: Môn Đ i s Th i gian làm bài: 180 phút Câu 1. Cho a0 , d là các s th c và dãy {a0 , a1 , a2 , . . . , an } l p thành c p s c ng công sai d. Tính đ nh th c c a ma tr n a0 a1 a2 . . . an−1 an a1 a0 a1 . . . an−2 an−1 a2 a1 a0 . . . an−3 an−2 A= . . . . . . .. . . . . . . . . . . . an−1 an−2 an−3 . . . a0 a1 an an−1 an−2 . . . a1 a0 Câu 2. Cho A là ma tr n th c vuông c p 2 tho mãn đi u ki n det A < 0. Ch ng minh r ng t n t i hai s th c phân bi t λ1 , λ2 và hai ma tr n A1 , A2 sao cho An = λn A1 + λn A2 , ∀n = 1, 2 . . . 1 2 Câu 3. Cho A là ma tr n th c vuông c p 3, v t (v t là t ng các ph n t trên đư ng chéo chính) là 8. T ng các ph n t trên m i hàng c a A b ng 4 và det A = 16. Xác đ nh các giá tr riêng c a A. Câu 4. Cho các s th c a1 , a2 , . . . , a2008 . Ch ng minh r ng t n t i các ma tr n th c vuông c p n (n > 1) A1 , A2 , . . . , A2008 th a mãn 2008 det Ak = ak (k = 1, . . . , 2008) và det Ak = 2009. k=1 Câu 5. Cho A là ma tr n vuông c p n kh ngh ch. M i ph n t c a các ma tr n A, A−1 là s nguyên. Ch ng minh r ng n u A có n giá tr riêng đ u là các s th c thì | det(A + A−1 )| 2n . Câu 6. T n t i hay không đa th c P (x) b c 2008 th a mãn đi u ki n P (k ) = 2k v i k = 0, 1, . . . , 2008? T i sao? ————————————
- Đáp án: Môn Đ i s Câu 1. Ta có a0 a1 a2 ... an−1 an a1 a0 a1 ... an−2 an−1 a2 a1 a0 ... an−3 an−2 det A = D = . . . . . .. . . . . . . . . . . . an−1 an−2 an−3 ... a0 a1 an an−1 an−2 ... a1 a0 C ng c t 1 vào c t cu i cùng ta đư c a0 a1 a2 ... an−1 1 a1 a0 a1 ... an−2 1 a2 a1 a0 ... an−2 1 D = (a0 + an ) . . . . . .. . . . . . . . . . . . an−1 an−2 an−3 ... a0 1 an an−1 an−2 ... a1 1 Nhân hàng th n − 1 v i −1 r i c ng vào hàng cu i cùng, nhân hàng th n − 2 v i −1 r i c ng vào hàng th n − 1, . . . nhân hàng 1 v i −1 r i c ng vào hàng th 2 ta đư c a0 a1 a2 . . . an−1 1 −d −d . . . −d d 0 d −d . . . −d d 0 D = (a0 + an ) . . . . . .. . . . . . . . . . . . −d d d d ... 0 d d d ... d 0 d −d −d . . . −d −d d d −d . . . −d −d −d −d dd d ... = (−1)n (a0 + an ) . . . . . .. . . . . . . . . . . . d −d dd d ... dd d ... d d C ng hàng cu i cùng vào t t c các dòng còn l i ta đư c 2d 0 0 ... 0 0 2d 2d 0 . . . 0 0 2d 2d 2d . . . 0 0 = (−1)n (2a0 + nd)2n−1 dn . D = (−1)n (a0 + an ) . . . . . .. . . . . . . . . . . . 2d 2d 2d . . . 2d 0 d d d ... d d Câu 2. Đa th c đ c trưng c a A có d ng det(A − λI ) = λ2 − trace (A)λ + det A. T gi thi t det A < 0 suy ra phương trình có hai nghi m th c phân bi t λ1 , λ2 . Khi đó, đ t 1 1 (A − λ2 I ), (A − λ1 I ). A1 = A2 = λ1 − λ2 λ2 − λ1 Suy ra A1 + A2 = I, λ1 A1 + λ2 A2 = A, A1 A2 = A2 A1 = 0. 2
- Vy An = λn A1 + λn A2 , ∀n = 1, 2 . . . 1 2 Câu 3. Ta có trace A = 8, det A = 16. và t ng các ph n t trên m t hàng c a ma tr n A là 4. Do đó ϕ(λ) = |λI − A| = λ3 − λ2 trace A + aλ − det A = λ3 − 8λ2 + aλ − 16. (1) M t khác −a11 + λ −a12 −a13 −a21 −a22 + λ −a23 |λI − A| = −a31 −a32 −a33 + λ λ − a11 − a12 − a13 −a12 −a13 = λ − a21 − a22 − a23 −a22 + λ −a23 λ − a31 − a32 − a33 −a32 −a33 + λ −a12 −a13 1 −a22 + λ −a23 =(λ − 4) 1 . −a32 −a33 + λ 1 Suy ra, λ = 4 là m t giá tr riêng c a A. Thay vào phương trình (1), ta đư c a = 20. V y ϕ(λ) = |λI − A| = λ3 − 8λ2 + 20λ − 16 = (λ − 4)(λ − 2)2 . V y ma tr n A có 4 là giá tr riêng đơn, và 2 là giá tr riêng b i 2. 2008 2009 ak , b = 2008s − Câu 4. Đ t s = . Xét các ma tr n c p n sau 2008n−2 k=1 a1 10 ... 0 a2 0 0 ... 0 0 10 . . . 0 b 1 0 ... 0 A1 = 0 01 . . . 0 , A2 = 0 0 1 ... 0 . .. . . . . .. . .. . .. . . . . . . . . .. . .. . . 0 00 ... 1 00 0 ... 1 ak 00 ... 0 0 10 ... 0 Ak = 0 01 ... 0 (k = 3, 4, . . . , 2008) . .. . .. . .. . . . .. . 0 00 ... 1 Do đó det Ak = ak , k = 1, . . . , 2008. M t khác s 1 0 ... 0 b 2008 0 ... 0 2008 Ak = 0 0 2008 ... 0 . . . . .. . . . . k=1 . . . . . 0 0 0 ... 2008 Khai tri n Laplace theo c t th nh t ta đư c 2008 = s.2008n−1 − b.2008n−2 = 2009. det Ak k=1 Câu 5. Do các ph n t c a A, A−1 đ u là s nguyên nên det A, det A−1 cũng là s nguyên. M t khác | det A|| det A−1 | = | det A. det A−1 | = 1. 3
- Suy ra | det A| = | det A−1 | = 1. V i m i ma tr n M , ký hi u PM (t) là đa th c đ c trưng c a nó. G i α1 , α2 , . . . , αn là t t c n các giá tr riêng th c c a A. Khi đó PA (t) = j =1 (t − αj ). Xét đa th c n 2 (t − (1 + αj )). Q(t) = j =1 Ta có deg Q(t) = n và n n n Q(I + A2 ) = (I + A2 − (1 + αj )I ) = 2 (A2 − αj I ) = 2 (A − αj I )(A + αj I ) = 0. j =1 j =1 j =1 T đó suy ra r ng PI +A2 (t) là ư c c a Q(t). Do deg Q(t) = n nên Q(t) ≡ PI +A2 (t). V y | det C | = | det A−1 . det D| = | det A−1 || det D| 2 2 2 = 1.(1 + α1 )(1 + α2 ) . . . (1 + αn ) 2n |α1 α2 . . . αn | = 2n . Câu 6. V i m i x = 0, 1, 2, . . . xét bi u th c x x x x x x + ··· + Q(x) = + + + + . x−2 x−1 0 1 2 x T bi u th c nói trên ta xác đ nh đư c đa th c P (x) := Q(x), và đa th c này th a mãn yêu c u bài toán. Có th gi i theo cách khác như sau: V i m i k = 0, 1, 2, . . . đ t x(x − 1) . . . (x − (k − 1))(x − (k + 1)) . . . (x − 2008) ωk (x) = . (k − 0)(k − 1) . . . (k − (k − 1))(k − (k + 1)) . . . (k − 2007) D dàng ch ng minh đa th c 2008 2k ωk (x) P (x) = k=0 th a mãn đi u ki n c a bài toán. ———————————— 4
- H I TOÁN H C VI T NAM OLYMPIC TOÁN SINH VIÊN 2008 Đ thi: Môn Gi i tích Th i gian làm bài: 180 phút Câu 1. Dãy s {an } đư c xác đ nh như sau 1 a1 = a2 = 1, an+2 = + an , n = 1, 2, . . . an+1 Tính a2008 . Câu 2. Tính 12008 + 22008 + · · · + n2008 lim . n2009 n→∞ Câu 3. Gi s hàm s f (x) liên t c trên [0, π ], f (0) = f (π ) = 0 và tho mãn đi u ki n |f (x)| < 1, ∀x ∈ (0, π ). Ch ng minh r ng ∃ c ∈ (0, π ) sao cho f (c) = tan f (c). (i) π |f (x)| < , ∀x ∈ (0, π ). (ii) 2 Câu 4. Cho hàm s f (x) liên t c trên [0, 1] và th a mãn đi u ki n 1, ∀x, y ∈ [0, 1]. xf (y ) + yf (x) 1 π Ch ng minh r ng f (x)dx . 4 0 Câu 5. Gi s f (x) là hàm s liên t c trên [0, 1] v i f (0) = 0, f (1) = 1 và kh vi trong (0, 1). Ch ng minh r ng v i m i α ∈ (0, 1) luôn t n t i x1 , x2 ∈ (0, 1) sao cho 1−α α + = 1. f (x1 ) f (x2 ) Câu 6. Cho hàm s g (x) có g (x) > 0 v i m i x ∈ R. Gi s hàm s f (x) xác đ nh và liên t c trên R và th a mãn các đi u ki n π g (0) 2 f (0) > g (0), f (x)dx < g (0)π + π. 2 0 Ch ng minh r ng t n t i c ∈ [0, π ] sao cho f (c) = g (c). ——————————————————-
- Đáp án: Môn Gi i tích Câu 1. Theo gi thi t ta có an+2 an+1 − an+1 an = 1. Như v y un = an+1 an là m t c p s c ng v i s h ng đ u tiên u1 = 1 và công sai d = 1. Khi đó n+1 n+1 an+2 = = an , n = 1, 2, . . . an+1 n Suy ra 2007 3 3.5 . . . 2007 a2008 = . . . a2 = . 2006 2 2.4. . . . 2006 Câu 2. Ta có 2008 2008 1 + 22008 + · · · + n2008 2008 1 1 2 n + ··· + Sn = = + n2009 n n n n n 2008 1 i = . n n i=1 i Xét hàm s f (x) = x2008 . Hi n nhiên, f (x) kh tích trên [0,1]. Chia đo n [0,1] b i các đi m xi = , n i ch n đi m ci = ∈ [xi−1 , xi ], i = 1, . . . , n. V y n n n 2008 1 1 i 1 i 1 x2008 dx = lim = lim f = . n n n n 2009 n→∞ n→∞ 0 i=1 i=1 Câu 3. (i) Xét hàm s g (x) = e−x sin f (x). Hàm s g (x) liên t c trên [0, π ], kh vi (0, π ) và g (0) = g (π ) = 0. Theo Đ nh lý Rolle, t n t i c ∈ (0, π ) sao cho g (c) = 0. M t khác, ta có g (x) = e−x (− sin f (x) + cos f (x)f (x)). Suy ra − sin f (c) + cos f (c)f (c) = 0. V y f (c) = tan f (c). (ii) V i m i x ∈ (0, π ) c đ nh, áp d ng Đ nh lý Lagrange cho các đo n [0, x], [x, π ] và s d ng gi thi t |f (x)| < 1, f (0) = f (π ) = 0 ta có ∃c1 ∈ (0, x) : |f (x)| = |f (x) − f (0)| = |f (c1 )||x| < |x|, ∃c2 ∈ (x, π ) : |f (x)| = |f (π ) − f (x)| = |f (c2 )||π − x| < |π − x|. π Do x ∈ (0, π ) nên min{|x|, |π − x|} ≤ . T các b t đ ng th c trên suy ra 2 π |f (x)| < min{|x|, |π − x|} ≤ . 2 ϕ ∈ 0, π . Khi đó Câu 4. Đ t x = sin ϕ, 2 π 1 2 I= f (x)dx = f (sin ϕ) cos ϕdϕ. 0 0 2
- ϕ ∈ 0, π . Ta có M t khác, đ t x = cos ϕ, 2 π 1 2 I= f (x)dx = f (cos ϕ) sin ϕdϕ. 0 0 Do đó π π 2 2 2I = f (sin ϕ) cos ϕdϕ + f (cos ϕ) sin ϕdϕ 0 0 π 2 = [f (cos ϕ) sin ϕ + f (sin ϕ) cos ϕ]dϕ. 0 π 1 π π T gi thi t xf (y ) + yf (x) ≤ 1 ∀x, y ∈ [0, 1] suy ra 2I ≤ f (x)dx ≤ dϕ = 2. Vy 4. 2 0 0 Câu 5. Do f (x) liên t c nên v i m i α ∈ (0, 1), t n t i x0 ∈ (0, 1) : f (x0 ) = α. Theo đ nh lý Lagrange t n t i x1 ∈ (0, x0 ) và x2 ∈ (x0 , 1) sao cho f (x0 ) − f (0) f (1) − f (x0 ) = f (x1 ), = f (x2 ). x0 − 0 1 − x0 1−α α Vì v y f (x1 ) = và f (x2 ) = .Vy 1 − x0 x0 1−α 1−α α α = α + 1−α = x0 + 1 − x0 = 1. + f (x1 ) f (x2 ) x0 1−x0 Câu 6. Xét hàm s Φ(x) = g (x) − f (x). Gi thi t suy ra Φ(0) < 0. M t khác, s d ng gi thi t g ”(x) > 0 đ khai tri n Taylor t i đi m 0 và tính tích phân ta thu đư c π π π π g (ξ ) 2 g (x)dx − Φ(x)dx = f (x)dx = g (0) + g (0)x + x dx 2 0 0 0 0 π π π π − g (0)xdx − f (x)dx > g (0)dx + f (x)dx 0 0 0 0 π g (0)π 2 − = g (0)π + f (x)dx > 0. 2 0 Suy ra t n t i m ∈ [0, π ] sao cho Φ(m) > 0. T tính liên t c c a hàm Φ(x) trên đo n [0, m] suy ra t n t i c ∈ [0, m] ⊂ [0, π ] đ Φ(c) = 0. ———————————— 3
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn