![](images/graphics/blank.gif)
Đề tài " A quantitative version of the idempotent theorem in harmonic analysis "
75
lượt xem 9
download
lượt xem 9
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Suppose that G is a locally compact abelian group, and write M(G) for the algebra of bounded, regular, complex-valued measures under convolution. A measure µ ∈ M(G) is said to be idempotent if µ ∗ µ = µ, or alternatively if µ takes only the values 0 and 1. The Cohen-Helson-Rudin idempotent theorem states that a measure µ is idempotent if and only if the set {γ ∈ G : µ(γ) = 1} belongs to the coset ring of G, 1. Introduction Let
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD