ĐỂ TÀI: CÁC TÍNH CHẤT VÀ CHỨC NĂNG CỦA PROTEIN TRONG THỰC PHẨM
lượt xem 178
download
Ngày nay, nhóm ngành Công nghiệp thực phẩm đã và đang phát triển mạnh ở nhiều quốc gia trên thế giới, trong đó có quốc gia Việt Nam chúng ta. Công nghiệp thực phẩm không chỉ đơn giản là chế biến, sản xuất, bảo quản, xuất khẩu thực phẩm cả trong và ngoài nước mà bên cạnh đó, công nghiệp thực phẩm còn nghiên cứu và ứng dụng các tính chất và chức năng của các thành phần hóa học cấu tạo nên thực phẩm, trong đó có protein. Protein không chỉ là đơn vị cấu tạo cơ bản trong...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỂ TÀI: CÁC TÍNH CHẤT VÀ CHỨC NĂNG CỦA PROTEIN TRONG THỰC PHẨM
- NG TH NG TR ỜNG ĐẠI HỌ NG NGHIỆP THỰ PHẨM TP.HCM NG NGHỆ THỰ PHẨM KHOA MÔN: HÓA HỌ THỰ PHẨM B ĐỂ TÀI: CÁC TÍNH CHẤT VÀ CHỨC NĂNG CỦA PROTEIN TRONG THỰC PHẨM GVHD: TRẦN THỊ MINH HÀ SVTH: Huỳnh Tấn Đạt 2005100054 Nguyễn Tấn Phúc 2005100040 Võ Minh Trí 2008100088 Phạm Quốc Huy 2005100171 Nguyễn Hoàng Phúc 2005100031 Lớp: 01DHTP1 TP.HỒ CHÍ MINH 11-2011
- NG TH NG TR ỜNG ĐẠI HỌ NG NGHIỆP THỰ PHẨM TP.H M KHOA NG NGHỆ THỰ PHẨM M N: HÓA HỌ THỰ PHẨM TIỂU LUẬN HÓA HỌ THỰ PHẨM ĐỀ TÀI: TÍNH HẤT VÀ HỨ NĂNG ỦA PROTEIN TRONG THỰ PHẨM GVHD: TRẦN THỊ MINH HÀ TP.HỒ CHÍ MINH 11-2011
- MỤ LỤ Trang LỜI MỞ ĐẦU PHẦN 1: TÍNH CHẤT CỦA PROTEIN ............................................................. 1 1.1.Khái niệm protein ............................................................................. 1 1.2. ấu trúc protein ................................................................................ 1 1.2.1.Acid amin-Đơn phân của protein............................................... 1 1.2.2.Các bậc cấu trúc của protein ...................................................... 1 1.3.Tính chất Hóa-Lý của protein ......................................................... 2 1.3.1.Tính tan của protein ................................................................... 2 1.3.2.Tính hydrat hóa của protein ....................................................... 2 1.3.3.Độ nhớt của protein.................................................................... 6 1.3.4.Hằng số điện môi của dung dịch protein ................................... 6 1.3.5.Tính chất điện ly của protein ..................................................... 7 1.3.6.Biểu hiện quang học của protein................................................ 8 1.3.7.Kết tủa thuận nghịch và không thuận nghịch ............................ 9 1.3.8.Các phản ứng hóa học của protein ........................................... 10 1.3.8.1.Phản ứng với Folin-Ciocalteau ........................................ 10 1.3.8.2.Phản ứng với Ninhydrin.................................................... 10 1.3.9.Biến tính protein ...................................................................... 11 1.3.9.1.Khái niệm chung ............................................................... 11 1.3.9.2.Các yếu tố gây biến tính ................................................... 11 1.3.9.3.Tính chất của protein biến tính ......................................... 12 1.3.10. Khả năng tạo gel của protein ................................................ 13 1.3.11.Khả năng tạo nhũ của protein ................................................ 15 1.3.12.Các tính chất tạo bọt của protein ........................................... 19 1.3.13.Khả năng cố định mùi của protein ......................................... 22 PHẦN 2: HỨ NĂNG ỦA PROTEIN ................................................ 26 PHỤ LỤ ..................................................................................................... 30 TÀI LIỆU THAM KHẢO .......................................................................... 30
- KẾ HOẠ H PHÂN NG LÀM VIỆ M N: HÓA HỌC THỰC PHẨM NHÓM 01, LỚP 01DHTP1 SÁNG THỨ 4_TIẾT 5,6 ĐỀ TÀI: TÍNH HẤT VÀ HỨ NĂNG ỦA PROTEIN TRONG THỰ PHẨM N I DUNG THỰ HẠN N P NG ỜI KÝ GỬI GHI STT KÝ HIỆN NHẬN NHẬN CHÚ Khái niệm về protein 01 10/11/2011 ấu trúc protein 02 Tính tan, tính hydrat, 12/11/2011 độ nhớt của protein Hằng số điện môi, tính 14/11/2011 03 chất điện ly, biểu hiện quang học của protein kết tủa thuận nghịch 04 16/11/2011 HUỲNH và không thuận nghịch, các phản ứng TẤN hóa học của protein ĐẠT iến tính protein 05 18/11/2011 Khả năng tạo gel, tạo 06 20/11/2011 nhũ của protein ác tính chất tạo bọt 07 22/11/2011 và khả năng cố dịnh mùi của protein Tổng hợp chức năng 08 24/11/2011 của Protein Nhóm Trưởng: HUỲNH TẤN ĐẠT
- LỜI MỞ ĐẦU Ngày nay, nhóm ngành Công nghiệp thực phẩm đã và đang phát triển mạnh ở nhiều quốc gia trên thế giới, trong đó có quốc gia Việt Nam chúng ta. Công nghiệp thực phẩm không chỉ đơn giản là chế biến, sản xuất, bảo quản, xuất khẩu thực phẩm cả trong và ngoài nước mà bên cạnh đó, công nghiệp thực phẩm còn nghiên cứu và ứng dụng các tính chất và chức năng của các thành phần hóa học cấu tạo nên thực phẩm, trong đó có protein. Protein không chỉ là đơn vị cấu tạo cơ bản trong cơ thể động vật và người mà còn giữ những vai trò, những chức năng rất quan trọng như là nâng đỡ, bảo vệ các mô cơ quan, vận chuyển oxy trong tế bào máu đến để nuôi các tế bào…Do đó, việc tìm hiểu và nghiên cứu các tính chất và chức năng của protein trong thực phẩm là vô cùng quan trọng và cần thiết đối với tất cả mọi người nói chung và các bạn học sinh sinh viên đang theo học nhóm ngành này nói riêng. Vì vậy mà nhóm chúng em đã cùng nhau nhau nghiên cứu và đưa ra một bài tiểu luận về những “TÍNH HẤT VÀ HỨ NĂNG ỦA PROTEIN TRONG THỰ PHẨM” nhằm củng cố kiến thức và giúp cho mọi người có một cái nhìn tổng quát hơn, sâu sắc hơn về protein. Dù đã cố gắng rất nhiều và do kiến thức có giới hạn nên sẽ không tránh khỏi những sai sót trong bài. Rất mong được sự góp ý của cô để những bài nghiên cứu về sau sẽ đầy đủ và ít sai sót hơn. TẬP THỂ NHÓM
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ PHẦN 1: TÍNH HẤT ỦA PROTEIN Khái niệm về protein 1.1. Protein là những đại phân tử được cấu tạo theo nguyên tắc đa phân mà các đơn phân là các axit amin. Chúng kết hợp với nhau thành một mạch dài nhờ các liên kết peptide (gọi là chuỗi polypeptide). Các chuỗi này có thể xoắn cuộn hoặc gấp theo nhiều cách để tạo thành các bậc cấu trúc không gian khác nhau của protein. ấu trúc của protein 1.2. 1.2.1. Axit amin – Đơn phân tạo nên protein Protein là một hợp chất đại phân tử được tạo thành từ rất nhiều các đơn phân là các axit amin. Axit amin được cấu tạo bởi ba thành phần: một là nhóm amin (-NH2), hai là nhóm Cacboxyl (-COOH) và cuối cùng là các nguyên tử Cacbon trung tâm đính với một nguyên tử Hydro và nhóm biến đổi R quyết định tính chất của axit amin. Người ta đã phát hiện ra được tất cả 20 axit amin trong thành phần của tất cả các loại protein khác nhau trong cơ thể sống. ác bậc cấu trúc của protein 1.2.2. Người ta phân biệt biệt ra 4 bậc cấu trúc của Protein: ấu trúc bậc một: Các axit amin nối với nhau bởi liên kết peptit hình thành nên chuỗi polypeptide. Đầu mạch polypeptit là nhóm amin của axit amin thứ nhất và cuối cùng là nhóm cacboxyl của axit amin cuối cùng. Cấu trúc bậc một của protein thực chất là trình tự sắp xếp các axit amin trên chuỗi polypeptide. Cấu trúc bậc một của protein có vai trò rất quan trọng vì trình tự các axit amin trên chuổi polypeptide sẽ thể hiện tương tác giữa các phần trong chuỗi polypeptide, từ đó tạo nên hình dạng lập thể của protein và do đó quyết định tính chất cũng như vai trò của protein. Sự sai lệch trong trình tự sắp xếp của các axit amin có thể dẫn đến sự biến đổi cấu trúc và tính chất của protein. HÓA HỌ THỰ PHẨM Trang 1
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ ấu trúc bậc hai: Là sự sắp xếp đều đặn các chuỗi polypeptide trong không gian. Chuỗi polypeptide thường không ở dạng thẳng mà ở xoắn và cấu trúc nếp gấp , được cố định bởi lại tạo nên cấu trúc xoắn các liên kết hydro giữa những axit amin gần nhau. Các protein sợi như , keratin, collagen…(có trong lôn, tóc, móng, sừng) gồm nhiều xoắn trong khi các protein cầu có nhiều nếp gấp hơn. và phiến nếp gấp có thể cuôn lại với ấu trúc bậc ba: Các xoắn nhau thành từng búi có hình dạng lập thể đặc trưng cho từng loại protein. Cấu trúc không gian này có vai trò quyết định đối với hoạt tính và chức năng của protein. Cấu trúc này lại đặc biệt phụ thuộc vào nhóm –R trong các mạch polypeptide. Chẳng hạn nhóm –R của cysteine có khả năng tạo cầu disunfur (-S-S), nhóm –R của proline cản trở việc hình thành xoắn, từ đó vị trí của chúng sẽ xác định điểm gấp hay, hay những nhóm –R ưa nước thì nằm phía ngoài phân tử, còn các nhóm kị nước thì chuôi vào bên trong phân tử…Các liên kết yếu hơn như liên kết hydro hay điện hóa trị có ở giữa các nhóm –R có điện tích trái dấu. ấu trúc bậc bốn: Khi protein có nhiều chuỗi polypeptide phối hợp với nhau thì tạo nên cấu trúc bậc bốn của protein. Các chuỗi polypeptide liên kết với nhau nhờ các liên kết yếu như liên kết hydro. Tính chất Lý – Hóa của protein 1.3. 1.3.1. Tính tan của protein Các loại protein khác nhau có khả năng hòa tan dễ dàng trong một số loại dung môi nhất định, chẳng hạn như albunmin dễ tan trong nước, globulin dễ tan trong muối loãng, prolamin tan trong ethanol, glutelin chỉ tan trong dung dịch kiềm hoặc acid loãng v.v… 1.3.2. Tính hydrat hóa của protein Phần lớn thực phẩm là những hệ rắn hydrat hóa. Các đặc tính hóa lý, lưu biến của protein và các thành phần khác của thực phẩm phụ thuộc không chỉ riêng vào sự có mặt của nước mà còn phụ thuộc vào hoạt tính của nước. Ngoài ra, các chế phẩm protein concentrate và isolate dạng khô trước khi sử HÓA HỌ THỰ PHẨM Trang 2
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ dụng phải được hydrat hóa. Do đó, các tính chất hydrat hóa và tái hydrat hóa của protein thực phẩm có ý nghĩa thực tiễn to lớn. Hydrat hóa protein ở trạng thái khô có thể được phân chia thành các gian đoạn liên tiếp như sau: Sơ đồ 1: Quá trình hydrat hóa một protein ở dạng khô Hấp thụ nước (còn gọi là cố định nước), trương nở, thấm ướt, khả năng giữ nước, tính dính, dẻo liên quan đến 4 giai đoạn đầu; khả năng phân tán, độ nhớt, độ đặc của protein liên quan đến giai đoạn 5. Trạng thái cuối cùng của protein – tan hoặc không tan (một phần hay hoàn toàn) – có liên quan đến các tính chất chức năng quan trọng như tính tan hoặc tính tan tức thời (giai đoạn 5 xảy ra nhanh). Tính tạo gel liên quan đến sự tạo thành khối không tan hydrat hóa tốt, nhưng các phản ứng protein – protein đóng vai trò chính. Cuối cùng, các tính chất bề mặt như nhũ tương hóa và tạo bọt cũng cần protein có khả năng hydrat hóa và phân tán cao hơn các đặc tính khác. Trong quá trình hydrat hóa, protein tương tác với nước qua các nối peptide hoặc các gốc R ở mạch bên nhớ liên kết hydro. ác yếu tố môi trường ảnh hưởng đến tính chất hydrat hóa Nồng độ protein, pH, nhiệt độ, thời gian, lực ion, sự có mặt của các thành phần khác là những yếu tố ảnh hưởng đến các phản ứng protein – protein và protein - nước. Các tính chất chức năng được xác định trong điều kiện cân bằng của các lực này. HÓA HỌ THỰ PHẨM Trang 3
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ Lượng nước hấp thụ tổng số tăng khi tăng nồng độ protein. pH thay đổi dẫn đến thay đổi mức độ ion hóa và sự tích điện trên bề mặt các phân tử protein, làm thay đổi lực hút và đẩy giữa các phân tử này và khả năng liên kết với nước. tại điểm đẳng điện pI, phản ứng protein – protein là cực đại, các phân tử protein liên kết với nhau, co lại và khả năng hydrat hóa và trương nở là cực tiểu. Nói chung khả năng giữ nước của protein giảm khi nhiệt độ tăng do làm giảm các liên kết hydro. Biến tính và tập hợp ( aggregation ) khi đun nóng làm giảm bề mặt phân tử protein và các nhóm phân cực có khả năng cố định nước. Tuy nhiên, đối với một số ngoại lệ, khi đun nóng trong nước protein có cấu trúc chặt chẽ cao, sự phân ly và duỗi ra của các phân tử có thể làm lộ ra trên bề mặt các liên kết peptide và mạch ngoại phân cực mà trước đó bị che dấu, kết quả là làm tăng khả năng cố định nước. Bản chất và nồng độ các ion gây ảnh hưởng đến lực ion trong môi trường và sự phân bố điện tích trên bề mặt phân tử protein nên cũng ảnh hưởng đến khả năng hydrat hóa. Người ta nhận thấy có sự cạnh tranh phản ứng (liên kết) giữa nước, muối và các nhóm ngoại của acid amin. Khi nồng độ muối (như NaCl) thấp, tính hydrat hóa của protein có thể tăng do sự đính thêm các io giúp mở rộng mạng lưới protein. Tuy nhiên, khi nồng độ muối cao, các phản ứng muối - nước trở nên trội hơn, làm giảm liên kết protein - nước và protein bị “sấy khô”. Sự hấp thụ và giữ nước của protein có ảnh hưởng đến tính chất và kết cấu của nhiều thực phẩm như bánh mì, thịt băm… Khả năng hóa tan của protein Thực phẩm ở trạng thái lỏng và giàu protein đòi hỏi protein phải có độ hòa tan cao. Độ hòa tan cao là một chỉ số rất quan trọng đối với protein được sử dụng trong đồ uống. Ngoài ra, người ta còn muốn protein có thể tan được ở những giá trị pH khác nhau và bền với nhiệt độ. Độ hòa tan của protein ở pH trung tính và pH đẳng điện là tính chất chức năng đầu tiên được đo đạc ở các giai đoạn chế biến và chuyển hóa HÓA HỌ THỰ PHẨM Trang 4
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ protein. Người ta thường sử dụng chỉ số “Nitơ hòa tan” (Nitrogen Solubility Index – NSI) để xác định đạc tính này. Biết được độ hòa tan của protein rất có ích cho các quá trình công nghệ như trích ly, tinh chế, tủa phân đoạn protein cũng như định hướng sử dụng các loại protein. Protein của lactoserum hòa tan tốt ở khoảng pH và lực ion rộng. Ngược lại, độ hòa tan của caseinate phụ thuộc nhiều vào pH, lực ion (và nồng độ Ca2+), nhưng ít phụ thuộc vào nhiệt độ như protein của lactoserum và protein đậu nành. Tính tan của phần lớn protein bị giảm mạnh và không thuận nghịch trong quá trình đun nóng. Tuy nhiên, trong chế biến thực phẩm, đun nóng luôn là cần thiết với các mục đích diệt vi sinh vật, giảm mùi khó chịu, tách bớt nước…Ngay cả trường hợp đun nóng nhẹ (sử dụng khi trích ly và làm sạch các chế phẩm protein) cũng gây nên sự biến tính nhất định và làm giảm độ hòa tan. Không phải tất cả protein có độ hòa tan ban đầu tốt sẽ luôn có các tính chất chức năng khác tốt. Có trường hợp khả năng hấp thụ nước của protein được cải thiện khi làm biến tính ở một mức độ nào đó. Đôi khi, khả năng tạo gel vẫn giữ được sau khi biến tính và không hòa tan một phần protein. Tương ứng với điều đó, việc tạo thành nhũ tương, hệ bọt và gel có thể liên quan tới các mức độ làm duỗi mạch, tập hợp và không hòa tan protein khác nhau. Ngược lại, protein của lactoserum caseinate và một vài protein khác cần có độ hòa tan ban đầu đủ lớn nếu muốn chuyển hóa nó thành dạng gel, hệ bọt hay hệ nhũ tương tốt. HÓA HỌ THỰ PHẨM Trang 5
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ 1.3.3. Độ nhớt của dung dịch protein Khi protein hòa tan trong dung dịch, mỗi loại dung dịch của những protein khác nhau có độ nhớt khác nhau. Người ta có thể lợi dụng tính chất này để xác định khối lượng phân tử protein (độ nhớt càng cao thì khối lượng phân tử càng cao). Bảng 1: Độ nhớt của một số loại protein Nồng độ % Độ nhớt tương đối Protein (trong nước) (của nước bằng 1) Gelatin 3,0 4,54 Albumin trứng 3,0 1,20 Gelatin 3,0 14,2 Albumin trứng 8,0 1,57 1.3.4. Hằng số điện môi của dung dịch protein Khi thêm các dung môi hữu cơ trung tính như ethanol, aceton vào dung dịch protein trong nước thì độ tan của protein giảm tới mức kết tủa do giảm mức độ hydrat hóa của các nhóm ion hóa protein, lớp áo mất nước, các phân tử protein kết hợp với nhau thành tủa. Như vậy hằng số điện môi làm ngăn cản lực tĩnh điện giữa các nhóm tích điện của protein và nước. Mối liên hệ đó được đặc trưng bởi biểu thức: L2 l2 F Dr 2 Trong đó: D - hằng số điện môi của dung dịch F - lực tĩnh điện giữa các ion tích điện L1, l2 – điện tích các ion r – khoảng cách giữa các ion Ở đây lực tĩnh điện giữa các ion tỉ lệ nghịch với hằng số điện môi và khoảng cách giữa các ion protein. HÓA HỌ THỰ PHẨM Trang 6
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ 1.3.5. Tính chất điện ly của protein Cũng như các amino acid, protein là chất điện ly lưỡng tính vì trong phân tử protein có nhiều nhóm phân cực mạnh (gốc bên R) của amino acid. Ví dụ nhóm COOH thứ hai của Asp, Glu; nhóm NH2 của Lys; nhóm OH của Ser, Thr, Tyr v.v…Trạng thái tích điện của các nhóm này phụ thuộc vào pH của môi trường. Ở pH nào đó mà tổng điện tích dương (+) bằng tổng điện tích âm (-) của phân tử protein bằng không, phân tử protein không di chuyển trong điện trường thì giá trị pH đó được gọi là pHi (isoeletric-điểm bằng điện) của protein. Như vậy protein chứa nhiều Asp, Glu (amino acid có tính acid mạnh) thì pHi ở trong vùng acid, ngược lại nhiều amino acid kiềm như Lys, Arg, His thì pHi ở trong vùng kiềm. Ở môi trường có pH < pHi , đa số protein là một cation, số điện tích dương lớn hơn số điện tích âm. Ở pH > pHi phân tử protein thể hiện tính acid, cho ion H+, do đó số điện tích âm lớn hơn số điện tích dương, protein là một đa ion, tích điện âm. ảng 2: Giá trị pHi của một số proetein Protein pHi Protein pHi Globulin sữa Pepsin 1,0 5,2 Albumin trứng 4,6 Hemoglobin 6,8 Casein 4,7 Ribonuclease 7,8 Albunmin 4,9 Tripsin 10.5 huyết thanh Gelatin 4,9 Prolamin 12.0 Trong môi trường pH=pHi , protein dễ dàng kết tụ lại với nhau vì thế người ta lợi dụng tính chất này để xác định pHi của protein cũng như để kết tủa protein. Mặt khác do sự sai khác nhau về pHi giữa các protein khác nhau, có HÓA HỌ THỰ PHẨM Trang 7
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ thể điều chỉnh pH của môi trường để tách riêng các protein ra khỏi hỗn hợp của chúng. Sự kết muối của dung dịch protein Muối trung tính có ảnh hưởng rõ tới độ hòa tan của protein hình cầu: với nồng độ thấp chúng làm hòa tan nhiều protein. Tác dụng đó không phụ thuộc vào bản chất của muối trung tính, mà phụ thuộc vào nồng độ các muối và số điện tích của mỗi ion trong dung dịch, tức là phụ thuộc vào lực ion của dung dịch ( 1/ 2 C1Z12 trong đó là kí hiệu của tổng, C1 là nồng độ của mỗi ion, Z1 là điện tích của mỗi ion). Các muối có ion hóa tr ị II (MgCl2, MgSO4...) làm tang đáng kể độ tan của protein hơn các muối ion có hóa trị I (NaCl, NH4Cl, KCl…) . Khi tăng đáng kể nồng độ muối trung tính thì độ tan của protein bắt đầu giảm van ở nồng độ muối rất cao, protein có thể bị tủa hoàn toàn. Các protein khác nhau tủa ở những nồng độ muối trung tính khác nhau. Người ta sử dụng tính chất này để chiết xuất và tách riêng từng phần protein ra khỏi hỗn hợp. Đó là phương pháp diêm tích (kết tủa protein bằng muối). Thí dụ dùng muối ammonium sulfate 50% bão hòa kết tủa globulin và dung dịch ammonium sulfate bão hòa để kết tủa albumin từ huyết thanh. 1.3.6. iểu hiện quang học của protein Cũng như nhiều chất hóa học khác , protein có khả năng hấp thụ và bức xạ ánh sáng dưới dạng lượng tử h . Vì vậy có thể đo cường độ hấp thụ của protein trong dung dịch hay còn gọi là mật độ quang thường kí hiệu bằng chữ OD (Optical Density). Dựa trên tính chất đó người ta đã sản xuất ra các loại máy quang phổ hấp thụ để phân tích protein. Nhìn chung, protei n đều có khả năng hấp thụ ánh sáng trong vùng khả kiến (từ 350nm-800nm) và vùng tử ngoại (từ 320nm xuống tới 180nm). Trong vùng ánh sáng khả kiến protein kết hợp với thuốc thử hấp thụ mạnh nhất ở vùng ánh sáng đỏ 750nm (định lượng protein theo Lowry). Đối với vùng tử ngoại dung dịch protein có khả năng hấp thụ ánh sáng tử ngoại ở hai vùng bước sóng khác nhau: 180nm-220nm và 250nm-300nm). HÓA HỌ THỰ PHẨM Trang 8
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ Ở bước sóng từ 180nm-220nm đó là vùng hấp thụ của liên kết peptide trong protein, cực đại hấp thụ ở 190nm. Do liên kết p eptide có nhiều trong phân tử protein nên độ hấp thụ khá cao, cho phép định lượng tất cả các loại protein với nồng độ thấp. Tuy nhiên vùng hấp thụ này của các liên kết peptide trong protein có thể bị dịch về phía có bước sóng dài hơn khi có một số tạp chất lẫn trong dung dịch protein. Mặt khác chính các tạp chất này cũng hấp thụ ánh sáng tử ngoại ở vùng bước sóng 180nm-220nm. Vì thế trong thực tế thường đo độ hấp thụ của dung dịch protein ở bước sóng 220nm-240nm. Ở bước sóng từ 250nm-300nm là vùng hấp thụ các amino acid thơm (Phe, Tyr, Trp) có trong phân tử protein hấp thụ cực đại ở 280nm. Có thể sử dụng phương pháp đo độ hấp thụ của dung dịch protein ở bước sóng 280nm để định tính và định lượng các protein có chứa các amino acid thơm. Hàm lượng các amino acid thơm trong các protein khác nhau thay đổi khá nhiều, do đó dung dịch của các protein khác nhau có nồng độ giống nhau có thể khác nhau về độ hấp thụ ở bước sóng 280nm. Và được đánh giá bằng hệ số tắt, ví dụ: hệ số tắt của albumin huyết thanh bò băng 6,7 khi cho ánh sáng có bước sóng 280nm đi qua 1cm dung dịch có nồng độ 10mg/ml; trong khi hệ số tắt của kháng thể IgG bằng 13,6. Ngoài ra có nhiều chất khác trong dung dịch cũng có ảnh hưởng đến độ hấp thụ protein. Vì vậy các phương pháp đo độ ấp thụ ở vùng ánh sáng tử ngoại thường được dùng để định lượng protein đã được tinh sạch hoặc để xác định protein trong các phân đoạn nhận được khi sắc ký tách các protein qua cột. 1.3.7. Kết tủa thuận nghịch và không thuận nghịch của protein Khi protein bị kết tủa đơn thuần bằng dung dịch muối trung tính có nồng độ khác nhau hoặc bằng alcohol, aceton ở nhiệt độ thấp thì protein vẫn giữ nguyên được mọi tính chất của nó kể cả tính chất sinh học và có thể hòa tan trở lại gọi là kết tủa thuận nghịch. Các yếu tố kết tủa thuận ngh ịch được dùng để thu nhận chế phẩm protein. Trong quá trình kết tủa thuận nghịch muối trung tính vừa làm trung hòa điện vừa loại bỏ lớp vỏ hydrat hóa của protein, còn dung môi hữu cơ háo nước phá hủy lớp vỏ hydrate nhanh chóng. HÓA HỌ THỰ PHẨM Trang 9
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ Trong chế phẩm protein nhận được còn lẫn các chất đã dùng để kết tủa, cần sử dụng phương pháp thích hợp để loại bỏ các chất này. Ví dụ có thể dùng phương pháp thẩm tích để loại bỏ muối. Ngược lại kết tủa không thuận nghịch là phân tử protein sau khi bị kết tủa không thể phục hồi lại trạng thái ban đầu. Sự kết tủa này thường được sử dụng để loại bỏ protein ra khỏi dung dịch, làm ngưng phản ứng của enzyme. Một trong những yếu tố gây kết tủa không thuận nghịch đơn giản nhất là đun sôi dung dịch protein (sẽ nói kỹ hơn trong phần biến tính protein ở phần sau). ác phản ứng hóa học của protein 1.3.8. 1.3.8.1. Phản ứng với thuốc thử Folin-Ciocalteau Thuốc thử Folin-Ciocalteau có chứa acid phosphomolipdic và acid phosphovolframic. Các chất này làm tăng độ nhạy của phản ứng biure, mặt khác phản ứng với gốc Tyr và Trp trong phân tử protein. Các gốc amino acid này tham gia trong quá trình tạo phức chất màu xanh da trời. 1.3.8.2. Phản ứng với Ninhydrin Tất cả các amino acid trong phân tử protein đều phản ứng với hợp chất ninhydrin tạo thành phức chất màu xanh tím, phản ứ ng được thực hiện qua một số bước như sau: Dưới tác dụng của ninhydrin ở nhiệt độ cao, amino acid tạo thành NH3, CO2 và aldehit, mạch polypeptide ngắn đi một Carbon; đồng thời ninhydrin chuyển thành diceto oxy hindrien. Diceto oxy hindrien, NH3 mới tạo thành tiếp tục phản ứng với một phân tử ninhydrin khác để tạo thành phức chất màu xanh tím. Protein cũng có thể tham gia nhiều phản ứng tạo màu khác như: phản ứng xanthproteic, các gốc amino acid Tyr, Trp, Phe trong protein tác dụng với HNO3 đặc tạo thành màu vàng và sau khi thêm kiềm sẽ chuyển thành màu HÓA HỌ THỰ PHẨM Trang 10
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ nâu; phản ứng Pauli, các gốc Tyr, His trong protein tác dụng với diasobenzosulfate acid tạo thành màu đỏ anh đào; phản ứng Milon gốc Tyr tác dụng với thủy ngân nitrate trong HNO3 đặc tạo thành kết tủa màu nâu đất v..v… 1.3.9. iến tính protein 1.3.9.1.Khái niệm chung Sau khi protein bị kết tủa , nếu loại bỏ các yếu tố gây kết tủa mà protein vẫn mất khả năng tạo thành dung dịch keo bền như trước và mất những tích chất ban đầu , chẳng hạn độ hòa tan giảm, tính ch ất sinh học bị mất gọi là sự biến tính protein. Vì vậy, đối với việc bảo quản protein, người ta thường để dung dịch protein ở nhiệt độ thấp thường là từ 0 40 C . Song ở nhiệt độ này dung dịch protein dần dần cũng bị biến tính , biến tín h càng nhanh khi dung dịch protein càng loãng. Sự biến tính ở nhiệt độ thấp của dung dịch protein loãng được gọi là sự biến tính “bề mặt”: protein bị biến tính tạo nên một lớp mỏng trên bề mặt dung dịch, phần dưới lớp mỏng là những nhóm ưa nước nằm trong dung dịch, phần trên lớp mỏng là những gốc kị nước của amino acid kết hợp với nhau bởi lực Van der Waals. Ở dung dịch đặc các phân tử protein kết hợp với nhau chặt chẽ hơn do đó làm giảm bớt và hạn chế sự biến tính bề mặt. Để bảo quản tốt các chế phẩm protein như enzyme, hormon, - globulin kháng độc tố v..v…người ta tiến hành làm đông khô (làm bốc hơi nước của dung dịch protein ở áp suất và nhiệt độ thấp), bột thu được có thể bảo quản được ngay cả ở nhiệt độ phòng thí nghiệm trong các ống hàn kín. 1.3.9.2. ác yếu tố gây biến tính Có nhiều yếu tố tác động gây ra sự biến tính protein như: nhiệt độ cao, tia tử ngoại, sóng siêu âm, acide, kiềm, kim loại nặng. Vì vậy, trong thực tế người ta rất chú ý ảnh hưởng của các yếu tố có khả năng làm biến tính protein, ví dụ: khi chiết xuất và tinh chế protein, đặc biệt là các protein enzyme, cũng như khi xác định hoạt độ của chúng, phải chú ý đề phòng biến tính. Muốn vậy phải đảm bảo những điều kiện thích hợp nhất cho quy trình kỹ HÓA HỌ THỰ PHẨM Trang 11
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ thuật, như tiến hành thí nghiệm trong lạnh và đảm bảo pH thích hợp của các dung dịch sử dụng. 1.3.9.3. Tính chất của protein biến tính Những thay đổi dễ thấy nhất ở protein biến tính là thay đổi tính tan, khả năng phản ứng hóa học và hoạt tính sinh học như: hemoglobin b ị biến tính không kết hợp với oxy được, tripsin khi bị biến tính không thủy phân được protein, kháng thể biến tính mất khả năng kết hợp với kháng nguyên v.v… Nghiên cứu cấu trúc không gian cho thấy khi bị biến tính phân tử protein không còn cuộn chặt như trước mà thường duỗi ra hơn, kết quả là phá vỡ cấu hình không gian cần thiết để thực hiện hoạt tính sinh học. Sự biến tính không làm đứt liên kết peptide mà làm đứt các liên kết hydro, liên kết muối v.v…nối các khúc của chuỗi polypeptide hoặc các chuỗi polypetide với nhau, vì vậy cấu trúc của nhóm kị nước của protein bị đảo lộn, các nhóm kị nước quay ra phía ngoài và các nhóm ưa nước quay vào trong, sự hydrat hóa của protein giảm (protein mất lớp áo nước) các phân tử protein dễ kết hợp với nhau, độ tan giảm và có thể kết tủa. Sự biến đổi cấu trúc khiến protein biến tính dễ bị tiêu hóa hơn protein nguyên thủy, thí dụ tripsin không thủy phân ribonuclease nguyên thủy, nhưng phân giải rất nhanh ribonuclease biến tính. Người ta phân biệt hai dạng biến tính: biến tính thuận nghịch (biến tính trở lại dạng ban đầu với tính chất và chức năng nguyên thủy của nó, đó là sự hoàn nguyên) và biến tính không thuận nghịch (protein không trở lại dạng ban đầu của nó). Lòng trắng trứng luộc là một ví dụ điển hình về biến tính không thuận nghịch, còn về biến tính thuận nghịch ta có thể nêu trường hợp tripsin: đun nóng tripsin ở pH bằng 3 tới 900 C , cấu trúc của phân tử tripsin bị biến đổi HÓA HỌ THỰ PHẨM Trang 12
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ (biến tính) nhưng sau khi làm lạnh một thời gian nhất định, tripsin trở lại cấu trúc ban đầu và lại có hoạt tính enzyme. 1.3.10. Khả năng tạo gel của protein Hiện tượng gel hóa là sự tập hợp các phân tử bị biến tính và tạo thành một mạng lưới protein có trật tự. Khả năng tạo gel là một tính chất chức năng quan trọng của nhiều protein. Nó đóng vai trò chủ yếu trong chế biến nhiều loại thực phẩm. Một số sản phẩm sữa như phomai, gel lòng trắng trứng, sản phẩm thịt cá dạng nghiền (giò, chả), gel keratin, gel protein đậu nành, bột nhào làm bánh mì, protein thực vật được cấu trúc bằng đùn nhiệt dẻo (extrusion) hay kéo sợi (các thịt giả) là những sản phẩm có cấu trúc gel. Tạo gel protein được sử dụng không chỉ để tạo thành các gel cứng, dẻo nhớt mà còn đồng thời cải thiện được tính chất hấp thụ nước, tính đặc chắc (tạo độ dày), cải thiện lực liên kết của các tiểu phần (tính bám dính) và để làm bền các hệ nhũ tương, hệ bọt thực phẩm. Gel protein điển hình chính là miếng đậu hủ, được sản xuất từ protein đậu nành. Điều kiện tạo Gel Trong phần lớn các trường hợp, gia công nhiệt là cần thiết cho việc tạo gel. Làm lạnh bên trong có thể cần thiết và acid hóa nhẹ đôi khi có lợi. Tương tự, cho thêm muối đặc biệt là ion Ca2+ có thể cần thiết để làm tăng tốc độ tạo gel, hoặc tăng độ cứng của gel (đối với trường hợp của protein đậu nành, lactoserum, serum albumin). Tuy nhiên, nhiều protein có thể tạo gel mà không cần đun nóng, chỉ nhờ thủy phân nhẹ bằng enzyme (mixen casein, lòng trắng trứng, fibrin); đơn HÓA HỌ THỰ PHẨM Trang 13
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ giản cho thêm Ca2+ (mixen casein) hay từ môi trường kiềm đưa về pH trung tính hoặc pI đẳng điện (như sản xuất đậu phụ). Trong khi nhiều gel được hình thành từ protein trong dung dịch (ovalbumin hoặc protein khác của lòng trắng trứng, -lactoglobulin hoặc các protein khác của lactoserum, serum albumin, mixen casein, protein đậu nành), một số hệ phân tán trong nước hoặc trong dung dịch muối ăn của protein ít hoặc không tan trong nước cũng có thể tạo thành gel (callagen, actomyosin, protein isolate đậu nành bị biến tính một phần hay toàn phần…). Như vậy tính tan của protein không phải luôn cần thiết cho sự tạo gel. Cơ chế tạo gel và cấu trúc gel Cơ chế và các phản ứng liên quan đến việc hình thành mạng lưới protein ba chiều đặc trưng của các gel hiện vẫn chưa được hiểu biết hoàn toàn. Tuy nhiên, trong mọi trường hợp, người ta thấy rằng sự duỗi ra của các mạch polypeptide (biến tính) luôn là cần thiết, xảy ra trước gian đoạn phản ứng có trật tự giữa protein-protein và hiện tượng tập hợp protein. Điều đó giải thích tại sao protein isolate đậu nành đã bị biến tính bởi nhiệt, dung môi hữu cơ hoặc kiềm có thể tạo gel không cần đun nóng bên trong. Sự tạo thành mạng lưới của protein là kết quả của sự cân bằng giữa các phản ứng protein- protein, protein-nước, lực hút và đẩy của các mạch polypeptide nằm kề nhau. Tham gia vào việc tạo nên cấu trúc gel là các liên kết kỵ nước (tăng theo chiều nhiệt độ), liên kết tĩnh điện (như các cầu với ion Ca2+ và các ion có hóa trị II khác), liên kết hydro (tăng theo chiều giảm nhiệt độ) và các cầu disulfide. Sự góp phần của mỗi kiểu liên kết này thay đổi sự phụ thược vào bản chất protein, các điều kiện môi trường và các giai đoạn khác nhau của quá trình gel hóa. Các lực đẩy tĩnh điện và các phản ứng protein-nước có xu hướng phân tách các mạnh polypeptide. Sự hình thành các cầu đồng hóa trị disulfide thường dẫn đến tạo gel bền chắc với nhiệt và không có tính thuận nghịch. Ví dụ, gel của ovalbumin hay -glactoglobulin. Gel của gelatin được tạo nên chủ yếu bởi các liên kết hydro. Đây là liên kết yếu, tạo ra sự linh động cho cấu trúc gel, làm gel có độ HÓA HỌ THỰ PHẨM Trang 14
- KHOA NG NGHỆ THỰ PHẨM GVHD: THS TRẦN THỊ MINH HÀ dẻo nhất định. Gel gelatin có tính thuận nghịch, chảy khi đun nóng (khoảng 300C) và chu kì tạo gel, nóng chảy có thể lặp lại nhiều lần. Gel của protein đậu nành có đặc tính trung gian, độ cứng của gel sẽ giảm khi đun nóng trên 800C. Một vài protein có tính chất khác nhau có thể tạo thành gel khi đun nóng đồng thời (cogelefication). Protein cũng có thể tạo gel bởi phản ứng với các polysaccharide có khả năng tạo gel. Các liên kết ion không đặc hiệu giữa gelatin tích điện (+) và alginate hoặc các pectate tích điện (-) tạo thành gel có độ cứng, độ đàn hồi và nhiệt độ nóng chảy cao hơn (khoảng 800C). Người ta biết rằng, ở pH của sữa, các liên kết ion đặc hiệu có thể được tạo ra giữa các trung tâm tích điện (+) của casein K và carrageenate. Nhiều gel tồn tại dưới dạng cấu trúc hydrat hóa mạnh, chứa tới hơn 10g nước trên 1g protein và các thành phần thực phẩm khác nằm bên trong “cái bẫy” của mạng lưới protein Nhiều gel protein có thể chứa đến 98% nước. Nước có thể ở dạng hydrat hóa (liên kết chặt chẽ với các nhóm có cực của protein) hoặc nước tự do trong các mạng lưới gel, tuy là nước tư do nhưng tách chúng ra không dễ dàng. 1.3.11. Khả năng tạo nhũ của protein Đại cương về sự hình thành và phân hủy nhũ tương Hệ nhũ tương là các hệ phân tán giữa hai chất lỏng không hào tan vào nhau, một ở dạng những giọt nhỏ phân tán, còn chất lỏng kia ở dạng pha phân tán liên tục. Phần lớn các hệ nhũ tương thực phẩm là loại “dầu trong nước” để chỉ chất lỏng phân cực ưa nước hydrophile và dầu là chất lỏng kị nước hydrophobe. Nhiều nhũ tương thực phẩm còn chứa cả bóng khí và chất rắn phân tán. HÓA HỌ THỰ PHẨM Trang 15
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề tài: Các Loại Mực In Offset Đặc Điểm-Cấu Tạo-Ứng Dụng Cho Từng Loại Sản Phẩm
31 p | 280 | 82
-
Xây dựng cơ sở dữ liệu và sách điện tử tra cứu các tính chất vật lý của đá và một số loại quặng ở Việt Nam
655 p | 120 | 22
-
Luận văn Thạc sĩ Mĩ thuật: Đề tài mang tính lịch sử trong tranh sơn mài Việt Nam giai đoạn 1945 – 1985
89 p | 138 | 14
-
Sáng kiến kinh nghiệm: Dùng phương pháp đồ thị để xác định các tính chất của ảnh tạo bởi thấu kính mỏng và vận dụng giải một số bài tập liên quan đến sự dịch chuyển của ảnh
14 p | 106 | 9
-
Luận án Tiến sĩ Vật lý: Nghiên cứu các tính chất phi cổ điển, dò tìm đan rối và viễn tải lượng tử của một số trạng thái phi cổ điển mới
140 p | 76 | 7
-
Tóm tắt luận án Tiến sĩ Vật liệu và linh kiện nanô: Chế tạo và khảo sát các tính chất phát quang, quang điện và điện hóa của các lớp chuyển tiếp dị chất có cấu trúc nanô
26 p | 45 | 7
-
Luận văn Thạc sĩ Vật lý: Các tính chất nhiệt động của màng mỏng với tương tác trao đổi phản sắt từ
59 p | 17 | 6
-
Luận án tiến sĩ Vật lý: Khảo sát các tính chất phi cổ điển và vận dụng các trạng thái phi cổ điển vào thông tin lượng tử
132 p | 52 | 5
-
Luận văn Thạc sĩ Vật lý: Khảo sát các tính chất phi cổ điển của trạng thái hai mode kết hợp SU(1,1) thêm một và bớt một photon
87 p | 11 | 5
-
Luận văn Thạc sĩ Vật lý: Khảo sát các tính chất phi cổ điển của trạng thái hai mode kết hợp SU(1,1) thêm một và bớt một photon lẻ
94 p | 18 | 5
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu các tính chất phi cổ điển của trạng thái thêm hai và bớt một photon lên hai mode kết hợp lẻ
109 p | 8 | 4
-
Luận văn Thạc sĩ Vật lý: Các tính chất nhiệt động của màng mỏng có bề dày vài lớp nguyên tử với mô hình Heisenberg XYZ
58 p | 7 | 4
-
Luận văn Thạc sĩ Vật lý: Khảo sát các tính chất phi cổ điển của trạng thái hai mode kết hợp thêm hai photon tích SU(1,1)
79 p | 13 | 4
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu các tính chất nhiệt động lực học của chuỗi spin với mô hình XXZ
62 p | 8 | 4
-
Luận văn Thạc sĩ Vật lý: Khảo sát các tính chất phi cổ điển của trạng thái hai mode kết hợp thêm hai photon tích SU(1,1) chẵn
90 p | 14 | 4
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu các tính chất phi cổ điển của trạng thái thêm hai và bớt một photon lên hai mode kết hợp
90 p | 19 | 4
-
Luận văn Thạc sĩ Vật lý: Khảo sát các tính chất phi cổ điển của photon trong hệ tương tác nguyên tử ba mức với hai photon ban đầu ở trạng thái kết hợp và kết hợp chẵn
99 p | 8 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn