intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi đánh giá chất lượng môn Toán lớp 12 năm 2020-2021 có đáp án - Trường THPT chuyên KHTN, Hà Nội (Mã đề 132)

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:41

15
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Việc ôn tập và hệ thống kiến thức với "Đề thi đánh giá chất lượng môn Toán lớp 12 năm 2020-2021 có đáp án - Trường THPT chuyên KHTN, Hà Nội (Mã đề 132)" được chia sẻ dưới đây sẽ giúp bạn nắm vững các phương pháp giải bài tập hiệu quả và rèn luyện kỹ năng giải đề thi nhanh và chính xác để chuẩn bị tốt nhất cho kì thi sắp diễn ra.

Chủ đề:
Lưu

Nội dung Text: Đề thi đánh giá chất lượng môn Toán lớp 12 năm 2020-2021 có đáp án - Trường THPT chuyên KHTN, Hà Nội (Mã đề 132)

  1. ĐẠI HỌC KHOA HỌC TỰ NHIÊN KỲ THI ĐÁNH GIÁ CHẤT LƯỢNG LỚP 12 - LẦN I TRƯỜNG THPT CHUYÊN KHTN NĂM HỌC 2020 - 2021 Môn thi: TOÁN HỌC MÃ ĐỀ THI: 132 Thời gian làm bài: 90 phút (không kể thời gian phát đề) Đề thi gồm 05 trang _____________________________________________ _________________ x y 1 z 1 BON 1: Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 :   và 2 1 2 x 1 y  2 z  3 d2 :   . Khoảng cách giữa hai đường thẳng này bằng 1 2 2 17 17 16 A. . B. . C. . D. 16. 16 4 17 BON 2: Diện tích hình phẳng giới hạn bởi đường thẳng y  x  3 và parabol y  2x2  x  1 bằng 13 13 9 A. 9. B. . C. . D. . 6 3 2 BON 3: Phương trình z 4  16 có bao nhiêu nghiệm phức? A. 0. B. 4. C. 2. D. 1. BON 4: Cho hàm số y  x3  mx2  m2 x  8. Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành? A. 3. B. 5. C. 4. D. 6. mx  4 BON 5: Có bao nhiêu giá trị nguyên của m để hàm số y  nghịch biến trên khoảng  1;1 ? xm A. 4. B. 2. C. 5. D. 0. 1 BON 6: Hàm số y   x  1 có tập xác định là 3 A. 1;   . B. 1;   . C.  ;  . D.  ;1  1;   . x y 1 z 1 BON 7: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và mặt phẳng 2 2 1 Q : x  y  2z  0. Viết phương trình mặt phẳng  P đi qua điểm A0; 1; 2 , song song với đường thẳng  và vuông góc với mặt phẳng Q  . A. x  y  1  0. B. 5x  3y  3  0. C. x  y  1  0. D. 5x  3y  2  0. BON 8: Tập nghiệm của bất phương trình log 1 x  log 1  2x  1 là 2 2 1  1  1  1  A.  ;1 . B.  ;1 . C.  ;1 . D.  ;1 . 2  4  4  2  BON 9: Tìm tất cả các giá trị thực của m để phương trình x4  2x2  3  2m  1 có đúng 6 nghiệm thực phân biệt. 3 5 A. 1  m  . B. 4  m  5. C. 3  m  4. D. 2  m  . 2 2 BON 10: Số nghiệm thực của phương trình log 4 x2  log 2 x2  2 là  A. 0. B. 2. C. 4. D. 1. Ngọc Huyền LB Trang 01/05
  2. BON 11: Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y  x3  12x  1  m cắt trục hoành tại 3 điểm phân biệt? A. 3. B. 33. C. 32. D. 31. BON 12: Cho a, b là các số thực dương thỏa mãn log ab  a b   3. Tính log  b a  . 3 ab 3 1 1 A. . B.  . C. 3. D. 3. 3 3 trên  0;   bằng 16 BON 13: Giá trị nhỏ nhất của hàm số y  x 2  x A. 6. B. 4. C. 24. D. 12. BON 14: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a 2. Cạnh bên SA vuông góc với đáy. Góc giữa SC và mặt đáy bằng 45. Gọi E là trung điểm BC. Tính khoảng cách giữa hai đường thẳng DE và SC. 2 a 19 a 10 a 10 2 a 19 A. . B. . C. . D. . 19 19 5 5 BON 15: Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình 4 x 1  m.2x  2  1  0 có nghiệm? A. 2019. B. 2018. C. 2021. D. 2017. x3  1 2 BON 16: Biết rằng 1 x2  x dx  a  b ln 3  c ln 2 với a, b, c là các số hữu tỉ. Tính 2a  3b  4c. A. 5. B. 19. C. 5. D. 19. BON 17: Biết rằng log 2 3  a , log 2 5  b. Tính log 45 4 theo a , b. 2a  b 2b  a 2 A. . B. . C. . D. 2ab. 2 2 2a  b BON 18: Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5? A. 38. B. 48. C. 44. D. 24. BON 19: Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 3; 2  và mặt phẳng  P  : 2x  y  2z  3  0. Khoảng cách từ điểm A đến mặt phẳng  P  bằng 2 A. . B. 2. C. 3. D. 1. 3 BON 20: Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm có 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ. 435 135 285 5750 A. . B. . C. . D. . 988 988 494 9880 BON 21: Tính nguyên hàm  tan 2 2 xdx. 1 1 A. tan 2 x  x  C. B. tan2x  x  C. C. tan 2 x  x  C D. tan2x  x  C. 2 2 4 x    3  x BON 22: Số nghiệm nguyên thuộc đoạn 99;100  của bất phương trình  sin    cos  là  5  10  A. 5. B. 101. C. 100. D. 4. Ngọc Huyền LB Trang 02/05
  3. x 1 y  2 z BON 23: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và mặt phẳng 1 2 2  P : 2x  y  2z  3  0. Gọi  là góc giữa đường thẳng  và mặt phẳng  P  . Khẳng định nào sau đây là đúng? 4 4 4 4 A. cos    . B. sin   . C. cos   . D. sin    . 9 9 9 9 BON 24: Cho cấp số cộng  un  thỏa mãn u1  u2020  2, u1001  u1021  1. Tính u1  u2  ...  u2021 . 2021 A. . B. 2021. C. 2020. D. 1010. 2 x 1 y  2 z  3 BON 25: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và điểm 2 2 1 A  1; 2;0  . Khoảng cách từ điểm A đến đường thẳng  bằng: 17 17 2 17 2 17 A. . B. . C. . D. . 9 3 9 3 x  2ln x  mx đồng biến trên  0;1 ? 8 3 BON 26: Có bao nhiêu giá trị nguyên dương của m đề hàm số y  3 A. 5. B. 10. C. 6. D. Vô số. x 1 y 1 z BON 27: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và hai mặt phẳng 1 1 2  P : x  2y  3z  0, Q : x  2y  3z  4  0. Viết phương trình mặt cầu có tâm thuộc đường thẳng  và tiếp xúc với cả hai mặt phẳng  P  và Q  . A. x 2   y  2    z  2   . B. x 2   y  2    z  2   . 2 2 1 2 2 1 7 7 C. x 2   y  2    z  2   . D. x 2   y  2    z  2   . 2 2 2 2 2 2 7 7 BON 28: Tìm nguyên hàm   2x  1 ln xdx.   A. x  x 2 ln x  x2 2  x  C.   B. x 2  x ln x  x2 2  x  C.   C. x 2  x ln x  x2 2  x  C.   D. x 2  x ln x  x2 2  x  C. 1  ab BON 29: Cho a, b là các số thực dương thỏa mãn 2 a b 2 ab 3  . Giá trị nhỏ nhất của biểu thức a2  b2 ab là   5 1 2 A. 3  5. B. 5 1 . C. . D. 2. 2 BON 30: Cho hàm số y  mx3  mx2   m  1 x  1. Tìm tất cả các giá trị của m để hàm số nghịch biến trên . 3 3 3 A.   m  0. B. m  0. C.   m  0. D. m   . 4 4 4 BON 31: Có bao nhiêu giá trị nguyên dương của m để hàm số y  x2  8ln2x  mx đồng biến trên  0;   ? A. 6. B. 7. C. 5. D. 8. Ngọc Huyền LB Trang 03/05
  4.  BON 32: Cho số phức z thỏa mãn 3z  i z  8  0. Tổng phần thực và phần ảo của z bằng  A. 1. B. 2. C. 1. D. 2. BON 33: Trong không gian với hệ tọa độ Oxyz , cho các điểm A 1;0; 2  , B  1;1; 3 , C  3; 2;0  và mặt phẳng  P : x  2y  2z  1  0. Biết rằng điểm M  a; b; c  thuộc mặt phẳng  P sao cho biểu thức MA2  2 MB2  MC 2 đạt giá trị nhỏ nhất. Khi đó a  b  c bằng A. 1. B. 1. C. 3. D. 5. BON 34: Tính đạo hàm của hàm số y  ln  x 1 . x 1 1 1 A. . B. . C. . D. . x 1 x 1 x x 2x  2 x   2 BON 35: Tính nguyên hàm  x 2 2 x 3  1 dx.  2x   2x  1  2x   2x  3 3 3 3 3 1 3 3 1 3 1 A.  C. B.  C. C.  C. D.  C. 18 3 6 9 2 BON 36: Phương trình 2 x  3x có bao nhiêu nghiệm thực? A. 2. B. 1. C. 0. D. 3. BON 37: Cho hàm số y  x  3x  2. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm A 1;0  ? 3 2 A. 2. B. 0. C. 1. D. 3. BON 38: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a 3, SA   ABCD và SA  a 2. Tính góc giữa SC và  ABCD . A. 90. B. 45. C. 30. D. 60. BON 39: Tọa độ tâm đối xứng của đồ thị hàm số y  x3  3x  2 là A.  0;0  . B.  0; 2  . C. 1;0  . D.  1; 4  . BON 40: Cho hàm số f  x  liên tục trên và thỏa mãn xf   x    x  1 f  x   e  x với mọi x. Tính f   0  . 1 A. 1. B. 1. C. . D. e. e BON 41: Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 1; 2  và mặt phẳng  P  : x  2y  3z  4  0. Viết phương trình đường thẳng đi qua A và vuông góc với  P  . x 1 y 1 z  2 x 1 y 1 z  2 x 1 y 1 z  2 x 1 y 1 z  2 A.   . B.   . C.   . D.   . 1 2 3 1 2 3 1 2 3 1 2 3 BON 42: Có bao nhiêu giá trị thực của tham số m để hàm số    y  mx9  m2  3m  2 x6  2m3  m2  m x4  m đồng biến trên  . A. Vô số. B. 1. C. 3. D. 2. 1 BON 43: Cho hàm số f  x  liên tục trên  0;   và thỏa mãn 2 f  x   xf    x với mọi x  0. Tính x 2  f  x  dx. 1 2 7 7 9 3 A. . B. . B. . D. . 12 4 4 4 Ngọc Huyền LB Trang 04/05
  5. x2 BON 44: Biết đường thẳng y  1  2 x cắt đồ thị hàm số y  tại hai điểm phân biệt A và B. Độ dài x 1 đoạn AB bằng A. 20. B. 20. C. 15. D. 15. BON 45: Cho hình chóp S.ABC có AB  3a, BC  4a , CA  5a , các mặt bên tạo với đáy góc 60, hình chiếu vuông góc của S lên mặt phẳng  ABC  thuộc miền trong của tam giác ABC. Tính thể tích hình chóp S.ABC. A. 2 a 3 3. B. 6 a 3 3. C. 12a3 3. D. 2 a 3 2. BON 46: Cho khối lăng trụ tam giác đều ABC.ABC có cạnh đáy là 2a và khoảng cách từ A đến mặt phẳng  ABC  bằng a. Thể tích của khối lăng trụ ABC.ABC. 2 a3 a3 2 3a 3 2 A. . B. . C. 2 2 a 3 . D. . 2 2 2 BON 47: Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng 3x  2 và đồ thị hàm số y  x2 quay quanh trục Ox. 1  4 4 A. . B. . C. . D. . 6 6 5 5 u  u9  u10 BON 48: Cho cấp số nhân  un  thỏa mãn 2  u3  u4  u5   u6  u7  u8 . Tính 8 . u2  u3  u4 A. 4. B. 1. C. 8. D. 2. BON 49: Tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn z  1  3i  z  1  i . A. x  2 y  2  0. B. x  y  2  0. C. x  y  2  0. D. x  y  2  0. BON 50: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB  BC  3a, góc SAB  SCB  90 và khoảng cách từ A đến mặt phẳng SBC  bằng a 6. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC theo a. A. 36a2 . B. 6 a 2 . C. 18a2 . D. 48a2 . ------------------------- HẾT ------------------------- Ngọc Huyền LB Trang 05/05
  6. ĐÁP ÁN 1.C 2.A 3.B 4.C 5.B 6.B 7.C 8.A 9.D 10.B 11.D 12.B 13.D 14.A 15.B 16.D 17.C 18.A 19.B 20.C 21.A 22.C 23.B 24.A 25.D 26.C 27.C 28.B 29.A 30.C 31.D 32.D 33.C 34.D 35.A 36.A 37.C 38.C 39.B 40.B 41.A 42.B 43.D 44.D 45.A 46.D 47.D 48.A 49.D 50.A
  7. TRƯỜNG ĐH KHTN ĐỀ THI THỬ THPTQG LẦN 1 TRƯỜNG THPT CHUYÊN NĂM HỌC 2020 – 2021 KHTN MÔN: TOÁN Thời gian làm bài: 90 phút; không kể thời gian phát đề x y 1 z  1 Câu 1 (TH): Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :   và 2 1 2 x 1 y  2 z  3 d2 :   . Khoảng cách giữa hai đường thẳng này bằng: 1 2 2 17 17 16 A. B. C. D. 16 16 4 17 Câu 2 (TH): Diện tích hình phẳng giới hạn bởi đường thẳng y  x  3 và parabol y  2 x 2  x  1 bằng: 13 13 9 A. 9 B. C. D. 6 3 2 Câu 3 (TH): Phương trình z 4  16 có bao nhiêu nghiệm phức? A. 0 B. 4 C. 2 D. 1 Câu 4 (VD): Cho hàm số y  x 3  mx 2  m 2 x  8. Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành? A. 3 B. 5 C. 4 D. 6 mx  4 Câu 5 (TH): Có bao nhiêu giá trị nguyên của m để hàm số y  nghịch biến trên khoảng  1;1 ? xm A. 4 B. 2 C. 5 D. 0 1 Câu 6 (NB): Hàm số y   x  1 3 có tập xác định là: A. 1;   B. 1;   C.  ;   D.  ;1  1;   x y 1 z 1 Câu 7 (TH): Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng  :   và mặt 2 2 1 phẳng  Q  : x  y  2 z  0. Viết phương trình mặt phẳng  P  đi qua điểm A  0; 1; 2  , song song với đường thẳng  và vuông góc với mặt phẳng  Q  . A. x  y  1  0 B. 5 x  3 y  3  0 C. x  y  1  0 D. 5 x  3 y  2  0 Câu 8 (TH): Tập nghiệm của bất phương trình log 1 x  log 1  2 x  1 là: 2 2 1  1  1  1  A.  ;1 B.  ;1 C.  ;1 D.  ;1 2  4  4  2  Câu 9 (VD): Tìm tất cả các giá trị thực của m để phương trình x 4  2 x 2  3  2m  1 có đúng 6 nghiệm thực phân biệt. Trang 1
  8. 3 5 A. 1  m  B. 4  m  5 C. 3  m  4 D. 2  m  2 2 Câu 10 (TH): Số nghiệm thực của phương trình log 4 x 2  log 2  x 2  2  là: A. 0 B. 2 C. 4 D. 1 Câu 11 (TH): Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y  x 3  12 x  1  m cắt trục hoành tại 3 điểm phân biệt? A. 3 B. 33 C. 32 D. 31 Câu 12 (VD): Cho a, b là các số thực dương thỏa mãn log ab  a b   3. Tính log b a . 3 ab 3 1 1 A. B.  C. 3 D. 3 3 3 16 Câu 13 (TH): Giá trị nhỏ nhất của hàm số y  x 2  trên  0;   bằng: x A. 6 B. 4 C. 24 D. 12 Câu 14 (VD): Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a 2. Cạnh bên SA vuông góc với đáy. Góc giữa SC và mặt phẳng đáy bằng 450. Gọi E là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng DE và SC . 2a 19 a 10 a 10 2a 19 A. B. C. D. 19 19 5 5 Câu 15 (TH): Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình 4 x 1  m.2 x  2  1  0 có nghiệm? A. 2019 B. 2018 C. 2021 D. 2017 2 x3  1 Câu 16 (TH): Biết rằng 1 x 2  x dx  a  b ln 3  c ln 2 với a, b, c là các số hữu tỉ. Tính 2a  3b  4c. A. 5 B. 19 C. 5 D. 19 Câu 17 (TH): Biết rằng log 2 3  a, log 2 5  b. Tính log 45 4 theo a, b. 2a  b 2b  a 2 A. B. C. D. 2ab 2 2 2a  b Câu 18 (TH): Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5. A. 38 B. 48 C. 44 D. 24 Câu 19 (NB): Trong không gian với hệ tọa độ Oxyz , cho điểm A 1;3; 2  và mặt phẳng  P  : 2 x  y  2 z  3  0. Khoảng cách từ điểm A đến mặt phẳng  P  bằng: 2 A. B. 2 C. 3 D. 1 3 Trang 2
  9. Câu 20 (TH): Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ. 435 135 285 5750 A. B. C. D. 988 988 494 9880  tan 2 Câu 21 (TH): Tính nguyên hàm 2 xdx. 1 1 A. tan 2 x  x  C B. tan 2x  x  C C. tan 2 x  x  C D. tan 2x  x  C 2 2 4 x    3  x Câu 22 (TH): Số nghiệm nguyên thuộc đoạn  99;100 của bất phương trình  sin    cos  là:  5  10  A. 5 B. 101 C. 100 D. 4 x 1 y  2 z Câu 23 (TH): Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  :   và mặt 1 2 2 phẳng  P  :2 x  y  2 z  3  0. Gọi α là góc giữa đường thẳng Δ và mặt phẳng (P). Khẳng định nào sau đây là đúng? 4 4 4 4 A. cos    B. sin   C. cos   D. sin    9 9 9 9 Câu 24 (TH): Cho cấp số cộng  un  thỏa mãn u1  u2020  2, u1001  u1221  1. Tính u1  u2  ....  u2021. 2021 A. B. 2021 C. 2020 D. 1010 2 x 1 y  2 z  3 Câu 25 (TH): Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và điểm 2 2 1 A  1; 2; 0  . Khoảng cách từ điểm A đến đường thẳng Δ bằng: 17 17 2 17 2 17 A. B. C. D. 9 3 9 3 8 3 Câu 26 (VD): Có bao nhiêu giá trị nguyên dương của m để hàm số y  x  2 ln x  mx đồng biến trên 3  0;1 ? A. 5 B. 10 C. 6 D. vô số x 1 y  1 z Câu 27 (TH): Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :   và hai mặt 1 1 2 phẳng  P  : x  2 y  3z  0,  Q  : x  2 y  3z  4  0. Viết phương trình mặt cầu có tâm thuộc đường thẳng  và tiếp xúc với cả hai mặt phẳng  P  và  Q  . 1 1 A. x 2   y  2    z  2   B. x 2   y  2    z  2   2 2 2 2 7 7 Trang 3
  10. 2 2 C. x 2   y  2    z  2   D. x 2   y  2    z  2   2 2 2 2 7 7 Câu 28 (TH): Tìm nguyên hàm   2 x  1 ln xdx . x2 x2 A.  x  x 2  ln x   xC B.  x  x 2  ln x   xC 2 2 x2 x2 C.  x  x 2  ln x   xC D.  x  x 2  ln x   xC 2 2 1  ab Câu 29 (VDC): Cho a, b là các số thực dương thỏa mãn 2 a b  2 ab 3  . Giá trị nhỏ nhất của biểu ab thức a 2  b 2 là: 5 1   2 A. 3  5 B. 5 1 C. D. 2 2 Câu 30 (VD): Cho hàm số y  mx3  mx 2   m  1 x  1 . Tìm tất cả các giá trị của m để hàm số nghịch biến trên R? 3 3 3 A.  m0 B. m  0 C.  m0 D. m   4 4 4 Câu 31 (VD): Có bao nhiêu giá trị nguyên dương của m để hàm số y  x 2  8ln 2 x  mx đồng biến trên  0;   ? A. 6 B. 7 C. 5 D. 8 Câu 32 (TH): Cho số phức z thỏa mãn 3 z  i  z  8   0 . Tổng phần thực và phần ảo của z bằng: A. 1 B. 2 C. 1 D. 2 Câu 33 (VDC): Trong không gian với hệ tọa độ Oxyz, cho các điểm A 1; 0; 2  , B  1;1;3 , C  3; 2;0  và mặt phẳng  P  : x  2 y  2 z  1  0 . Biết rằng điểm M  a; b; c  thuộc mặt phẳng (P) sao cho biểu thức MA2  2 MB 2  MC 2 đạt giá trị nhỏ nhất. Khi đó a  b  c bằng: A. 1 B. 1 C. 3 D. 5 Câu 34 (TH): Tính đạo hàm của hàm số y  ln  x 1 .  x 1 1 1 A. B. C. D. x 1 x 1 x x 2x  2 x  x 2x  1 dx . 2 3 2 Câu 35 (TH): Tính nguyên hàm 2x  1 2x  1 2x  1 2x  1 3 3 3 3 3 3 3 3 A. C B. C C. C D. C 18 3 6 9 2 Câu 36 (TH): Phương trình 2 x  3x có bao nhiêu nghiệm thực? A. 2 B. 1 C. 0 D. 3 Trang 4
  11. Câu 37 (VD): Cho hàm số y  x 3  3x 2  2 . Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm A 1; 0  ? A. 2 B. 0 C. 1 D. 3 Câu 38 (TH): Cho hình chóp S . ABCD có đáy là hình vuông cạnh a 3 , SA   ABCD  và SA  a 2 . Tính góc giữa SC và  ABCD  . A. 900 B. 450 C. 300 D. 600 Câu 39 (TH): Tọa độ tâm đối xứng của đồ thị hàm số y  x 3  3x  2 là: A.  0; 0  B.  0; 2  C. 1; 0  D.  1; 4  Câu 40 (VD): Cho hàm số f  x  liên tục trên  và thỏa mãn xf   x    x  1 f  x   e  x với mọi x . Tính f   0  . 1 A. 1 B. 1 C. D. e e Câu 41 (TH): Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 1; 2  và mặt phẳng  P  : x  2 y  3z  4  0 . Viết phương trình đường thẳng đi qua A và vuông góc với (P). x 1 y  1 z  2 x 1 y 1 z  2 A.   B.   1 2 3 1 2 3 x 1 y 1 z  2 x 1 y 1 z  2 C.   D.   1 2 3 1 2 3 Câu 42 (VDC): Có bao nhiêu giá trị thực của m để hàm số y  mx9   m 2  3m  2  x 6   2m3  m 2  m  x 4  m đồng biến trên  . A. Vô số B. 1 C. 3 D. 2 1 Câu 43 (VD): Cho hàm số f  x  liên tục trên  0;   và thỏa mãn 2 f  x   xf    x với mọi x  0 .  x 2 Tính  f  x  dx . 1 2 7 7 9 3 A. B. C. D. 12 4 4 4 x2 Câu 44 (TH): Biết rằng đường thẳng y  1  2 x cắt đồ thị hàm số y  tại hai điểm phân biệt A và x 1 B. Độ dài đoạn thẳng AB bằng: A. 20 B. 20 C. 15 D. 15 Trang 5
  12. Câu 45 (VD): Cho hình chóp S . ABC có AB  3a, BC  4a, CA  5a , các mặt bên tạo với đáy góc 600 , hình chiếu vuông góc của S lên mặt phẳng  ABC  thuộc miền trong tam giác ABC. Tính thể tích hình chóp S . ABC . A. 2a3 3 B. 6a 3 3 C. 12a 3 3 D. 2a 3 2 Câu 46 (VD): Cho khối lăng trụ tam giác đều ABC. ABC  có cạnh đáy là 2a và khoảng cách từ điểm A đến mặt phẳng  ABC  bằng a. Tính thể tích của khối lăng trụ ABC . ABC  . 2a 3 a3 2 3a 3 2 A. B. C. 2 2a3 D. 3 2 2 Câu 47 (TH): Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng 3 x  2 và đồ thị hàm số y  x 2 quanh quanh trục Ox . 1  4 A. B. C. D. 6 6 5 u8  u9  u10 Câu 48 (TH): Cho cấp số nhân  un  thỏa mãn 2  u3  u4  u5   u6  u7  u8 . Tính . u 2  u3  u 4 A. 4 B. 1 C. 8 D. 2 Câu 49 (VD): Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn z  1  3i  z  1  i . A. x  2 y  2  0 B. x  y  2  0 C. x  y  2  0 D. x  y  2  0 Câu 50 (VDC): Cho hình chóp S . ABC có đáy ABC là tam giác vuông cân tại B, AB  BC  3a , góc SAB  SCB  900 và khoảng cách từ A đến mặt phẳng  SBC  bằng a 6 . Tính diện tích mặt cầu ngoại tiếp hình chóp S . ABC . A. 36 a 2 B. 6 a 2 C. 18 a 2 D. 48 a 2 -------------------- HẾT -------------------- https://toanmath.com/ Trang 6
  13. Đáp án 1-C 2-A 3-B 4-C 5-B 6-B 7-C 8-A 9-D 10-B 11-D 12-B 13-D 14-A 15-B 16-D 17-C 18-A 19-B 20-C 21-A 22-C 23-B 24-A 25-D 26-C 27-B 28-A 29-C 30-D 31-D 32-D 33-C 34-D 35-A 36-A 37-C 38-C 39-B 40-B 41-A 42-B 43-D 44-D 45-A 46-D 47-D 48-A 49-D 50-A LỜI GIẢI CHI TIẾT Câu 1: Đáp án C Phương pháp giải:   Cho đường thẳng d1 đi qua điểm M 1 và có VTCP u1 ; đường thẳng d 2 đi qua điểm M 2 và có VTCP u2 .    u1 ,u2  .M 1 M 2   Khi đó ta có khoảng cách giữa d1 , d 2 được tính bởi công thức: d  d1 ; d 2     . u1 ,u2    Giải chi tiết: Ta có: x y 1 z  1  d1 :    d1 đi qua M 1  0; 1;  1 và có 1 VTCP là: u1   2;1; 2  . 2 1 2 x 1 y  2 z  3  d2 :    d 2 đi qua M 2 1; 2;3 và có 1 VTCP là: u2  1; 2; 2  . 1 2 2   M 1M 2  1;1; 4        1 2   u , u   2; 2;3    u1 ,u2  .M 1M 2 2  2  12   16  d  d1 ; d 2       . u1 ,u2  2 2  2 2  32 17   Câu 2: Đáp án A Phương pháp giải: - Xét phương trình hoành độ tìm 2 đường giới hạn x  a, x  b . - Diện tích hình phẳng giới hạn bởi đồ thị hàm số y  f  x  , y  g  x  , đường thẳng x  a, x  b là b S   f  x   g  x  dx . a Giải chi tiết: x  2 Xét phương trình hoành độ giao điểm: x  3  2 x 2  x  1   .  x  1 Trang 7
  14. 2 Vậy diện tích hình phẳng cần tính là S   x  3  2x  x  1 dx  9 . 2 1 Câu 3: Đáp án B Phương pháp giải: Sử dụng hằng đẳng thức a 2  b 2   a  b  a  b  . Giải chi tiết: Ta có z 4  16  z 4  16  0   z 2  4  z 2  4   0 z2  4  z  2  2   z  4  z  2i Vậy phương trình đã cho có 4 nghiệm phức. Câu 4: Đáp án C Phương pháp giải: - Giải phương trình y  0 xác định các giá trị cực trị theo m. - Chia các TH, tìm các giá trị cực tiểu tương ứng và giải bất phương trình yCT  0 . Giải chi tiết: Ta có y  3 x 2  2mx  m 2 ; y  0 có   m 2  3m2  4m 2  0 m . Để hàm số có cực tiểu, tức là có 2 điểm cực trị thì phương trình y  0 phải có 2 nghiệm phân biệt m0  m  2m  x  3  m  y  m  8 3 Khi đó ta có y  0    x  m  2 m   m  y  5m  8 3  3 3 27  m  0    yCT   m  8  0  m  2 3 0  m  2  Khi đó yêu cầu bài toán  m  0  6   m0  5m 3 6  3 5  yCT  27  8  0  m   3  5 Lại có m    m  3; 2; 1;1 . Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán. Câu 5: Đáp án B Phương pháp giải:  y  0 ax  b  Hàm số y  nghịch biến trên  ;   khi và chỉ khi  d cx  d  c   ;   Giải chi tiết: Trang 8
  15. TXĐ: D   \  m . mx  4 m2  4 Ta có y   y  . xm  x  m 2 Để hàm số nghịch biến trên khoảng  1;1 thì m2  4  0 2  m  2  y   0   1  m  2     m  1    m  1  .  m   1;1   m  1   m  1  2  m  1   Lại có m    m  1 . Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán. Câu 6: Đáp án B Phương pháp giải: Hàm số y  x n với n   xác định khi và chỉ khi x  0 . Giải chi tiết: 1 Hàm số y   x  1 3 xác định khi và chỉ khi x  1  0  x  1 . Vậy TXĐ của hàm số là 1;   . Câu 7: Đáp án C Phương pháp giải:   - Xác định u là 1 VTCP của  và nQ là 1 VTPT của  Q  .    P  / /  nP  u    - Vì       nP   nQ ; u  .  P    Q  nP  nQ  - Phương trình mặt phẳng đi qua M  x0 ; y0 ; z0  và có 1 VTPT → n  A; B; C  là A  x  x0   B  y  y0   C  z  z0   0 . Giải chi tiết:  Đường thẳng  có 1 VTCP là u   2; 2;1 .  Mặt phẳng  Q  có 1 VTPT là nQ  1; 1; 2  .     P  / /  nP  u Gọi nP là 1 VTPT của mặt phẳng  P  . Vì      .  P    Q  nP  nQ      nP   nQ ; u    3;3; 0   n 1;1;0  cũng là 1 VTPT của  P  . Vậy phương trình mặt phẳng  P  là 1.  x  0   1.  y  1  0.  z  2   0  x  y  1  0 . Câu 8: Đáp án A Phương pháp giải: Trang 9
  16. - Tìm ĐKXĐ của bất phương trình. - Giải bất phương trình logarit: log a f  x   log a g  x   f  x   g  x  khi 0  a  1 . Giải chi tiết: x  0 1 ĐKXĐ:  x . 2 x  1  0 2 Ta có: log 1 x  log 1  2 x  1 2 2  log 1 x  log 1  2 x  1  x   2 x  1 2 2 2 2 1  x 2  4 x 2  4 x  1  3x 2  4 x  1  0   x 1 3 1  Kết hợp điều kiện ta có tập nghiệm của phương trình là S   ;1 . 2  Câu 9: Đáp án D Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m  f  x  . - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y  2m  1 phải cắt đồ thị hàm số y  x 4  2 x 2  3 tại 3 điểm phân biệt. - Lập BBT hàm số y  x 4  2 x 2  3 , từ đó lập BBT hàm số y  x 4  2 x 2  3 , y  x 4  2 x 2  3 và tìm m thỏa mãn. Giải chi tiết: Số nghiệm của phương trình x 4  2 x 2  3  2m  1 là số giao điểm của đồ thị hàm số y  x 4  2 x 2  3 và đường thẳng y  2m  1 . x  0 Xét hàm số y  x 4  2 x 2  3 ta có y  4 x 3  4 x  0    x  1 BBT: Từ đó ta suy ra BBT của đồ thị hàm số y  x 4  2 x 2  3 . - Từ đồ thị y  x 4  2 x 2  3 lấy đối xứng phần đồ thị bên dưới trục Ox qua trục Ox . Trang 10
  17. - Xóa đi phần đồ thị bên dưới trục Ox . Ta có BBT của đồ thị hàm số y  x 4  2 x 2  3 như sau: Dựa vào BBT ta thấy đường thẳng y  2m  1 cắt đồ thị hàm số y  x 4  2 x 2  3 tại 6 điểm phân biệt khi 5 và chỉ khi 3  2m  1  4  4  2m  5  2  m  . 2 5 Vậy 2  m  . 2 Câu 10: Đáp án B Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m  f  x  . - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y  m phải cắt đồ thị hàm số y  f  x  tại 3 điểm phân biệt. - Lập BBT hàm số y  f  x  và tìm m thỏa mãn. Giải chi tiết: x  0  x2  0  x  2 ĐKXĐ:  2   x  2   x  2  0   x   2   x   2 Ta có: log 4 x 2  log 2  x 2  2  1  .2.log 2 x  log 2  x 2  2  2  log 2 x  log 2  x 2  2   x 2  2  x  x  x  2  0  x  2  x  2  tm  2 Vậy phương trình đã cho có 2 nghiệm phân biệt. Câu 11: Đáp án D Phương pháp giải: - Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng m  f  x  . Trang 11
  18. - Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y  m phải cắt đồ thị hàm số y  f  x  tại 3 điểm phân biệt. - Lập BBT hàm số y  f  x  và tìm m thỏa mãn. Giải chi tiết: Xét phương trình hoành độ giao điểm x3  12 x  1  m  0  m  x3  12 x  1  f  x  . Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng y  m phải cắt đồ thị hàm số y  f  x  tại 3 điểm phân biệt. Ta có f   x   3 x 2  12  0  x  2 . BBT: Dựa vào BBT ta thấy để đường thẳng y  m phải cắt đồ thị hàm số y  f  x  tại 3 điểm phân biệt thì 15  m  17 . Mà m    m  14; 13; 12;...;15;16 . Vậy có 31 giá trị của m thỏa mãn yêu cầu bài toán. Câu 12: Đáp án B Phương pháp giải: - Sử dụng các công thức: log a  xy   log a x  log a y  0  a  1, x, y  0  m log a n b m  log a b  0  a  1, b  0  n Từ giả thiết tính log a b . - Biến đổi biểu thức cần tính bằng cách sử dụng các công thức trên, thay log a b vừa tính được để tính giá trị biểu thức. Giải chi tiết: Theo bài ra ta có: log√ab(a3√b)=log√ab(3√ab.3√a2)=log√ab3√ab+log√ab3√a2=log(ab)12(ab)13+1loga23(ab)12=132.logab (ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37logab(ab3)=logab(ab3.a23)=lo gabab3+logaba23=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒2 3+134(1+logab)=3⇒logab=−37 log ab  a b   log  3 ab 3 ab . 3 a 2  Trang 12
  19.  log ab 3 ab  log ab 3 a2 1 1  log 1  ab  3  1  ab  2 log 2  ab  2 a3 1 1  2.log ab  ab   3 1 3 . log a  ab  2 2 2 1   3 3 1  log a b  4 2 1   3 3 3 1  log b  a  4 3  log a b   7 Khi đó ta có: log ab b a   log  3 ab 3 ab 3 b 2   log ab 3 ab  log ab 3 b2 1 1  log 1  ab  3  1  ab  2 log 2  ab  2 b3 1 1  .2.log ab  ab   3 1 3 . log b  ab  2 2 2 1   3 3 log a  1  b  4 2 4 1 1   .  7 3 3  1 3 3 Câu 13: Đáp án D Phương pháp giải: Lập BBT của hàm số trên  0;   và tìm GTNN của hàm số. Giải chi tiết: Hàm số đã cho xác định trên  0;   . 16 2 x 3  16 Ta có y  2 x   ; y  0  x  2 . x2 x2 Trang 13
  20. BBT: Dựa vào BBT ta thấy min y  12 .  0;  Câu 14: Đáp án A Phương pháp giải: - Xác định mặt phẳng  P  chứa DE và song song với SC , khi đó d  DE ; SC   d  SC ;  P   . - Đổi sang d  A;  P   . Dựng khoảng cách. - Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó. - Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích … để tính khoảng cách. Giải chi tiết: Trong  ABCD  gọi I  AC  DE , trong  SAC  kẻ IG / / SC  G  SA  , khi đó ta có DE   GDE  / / SC .  d  SC ; DE   d  SC ;  GDE    d  C ;  GDE   . IC EC 1 d  C ;  GDE   IC 1 Áp dụng định lí Ta-lét ta có:   , do AC   GDE   I nên   IA AD 2 d  A;  GDE   IA 2 1  d  C ;  GDE    d  A;  GDE   . 2 Trong  ABCD  kẻ AH  DE  H  DE  , trong  GAH  kẻ AK  GH  K  GH  ta có:  DE  AH   DE   AGH   DE  AK  DE  AG Trang 14
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2