intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi học sinh giỏi môn Toán lớp 7 năm 2022-2023 có đáp án - Trường THCS Hàm Nghi, Thạch Hà

Chia sẻ: _ _ | Ngày: | Loại File: DOCX | Số trang:4

3
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo “Đề thi học sinh giỏi môn Toán lớp 7 năm 2022-2023 có đáp án - Trường THCS Hàm Nghi, Thạch Hà” để bổ sung kiến thức, nâng cao tư duy và rèn luyện kỹ năng giải đề chuẩn bị thật tốt cho kì thi học kì sắp tới các em nhé! Chúc các em ôn tập kiểm tra đạt kết quả cao!

Chủ đề:
Lưu

Nội dung Text: Đề thi học sinh giỏi môn Toán lớp 7 năm 2022-2023 có đáp án - Trường THCS Hàm Nghi, Thạch Hà

  1. TRƯỜNG THCS ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC SINH GIỎI HAM NGHI NĂM HỌC 2022-2023 Môn: Toán - lớp 7 (Thời gian làm bài: 120 phút) Bài 1 (4 điểm): a) Thực hiện phép tính: b) Chứng minh rằng với mọi số nguyên dương n thì : chia hết cho 10 Bài 2 (4 điểm): a. Tìm x, biết: b. Tìm số tự nhiên x, biết: Bài 3 (4 điểm): a) Tìm ba số biết chúng tỉ lệ với và tổng các bình phương của ba số đó bằng 24309. b) Cho . Chứng minh rằng: Bài 4 (2 điểm): Trong kỳ thi Olympic Toán lớp 7 của một huyện, bốn bạn Lam, Hồng, Chiến, Thắng đạt bốn giải khác nhau: nhất, nhì, ba, KK. Biết rằng mỗi câu sau đây đúng một nửa và sai một nửa: a) Chiến giải nhất, Hồng giải nhì; b) Chiến giải nhì, Thắng giải ba; c) Lam giải nhì, Thắng giải KK. Em hãy xác định đúng giải mà mỗi bạn đạt được? Bài 5 (6 điểm): Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ . Biết = 50o ; =25o . Tính và = = = = = = Hết = = = = = = HƯỚNG DẪN CHẤM TOÁN 7 Bài 1: (4 điểm): Đáp án Điểm a) (2 điểm) b) (2 điểm) 0,5 điểm
  2. - Với mọi số nguyên dương n ta có: = = 0,5 điểm = = 10( 3n -2n) Vậy 10 với mọi n là số nguyên dương. 0,5 điểm 0,5 điểm 0,5 điểm 1 điểm 0,5 điểm Bài 2: (4 điểm) Đáp án Điểm a) (2 điểm) Vậy: b) (2 điểm) 0,5 điểm Vậy: 1 điểm 0,5 điểm 0,5 điểm 0,5 điểm
  3. 0,5 điểm 0,5 điểm Bài 3: (4 điểm) Đáp án Điểm a) (2,5 điểm) Gọi a, b, c là ba số cần tìm Theo đề bài ta có: a : b : c = (1) và a2 +b2 +c2 = 24309 (2) 0,5 điểm Từ (1) = k Do đó (2) k = 180 và k = 0,5 điểm + Với k =180, ta được: a = 72; b = 135; c = 30. + Với k =, ta được: a = ; b =; c = b) (1,5 điểm) Từ suy ra 0,5 điểm khi đó 0,5 điểm = 0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm Bài 4: (2 điểm) Giả sử Chiến giải nhất sai thì Hồng giải nhì đúng -> Chiến giải Nhì sai và Thắng giải ba đúng -> Thắng giải KK sai và Lam giải nhì đúng (mâu thuẫn Hồng giải nhì) Giả sử Chiến giải nhất đúng thì Hồng giải nhì sai -> Chiến giải nhì sai và Thắng giải ba đúng -> Thắng giải KK sai và Lam giải nhì đúng. Vậy: Chiến giải nhất, Thắng giải Ba, Lam giải Nhì, còn lại Hồng giải KK A Bài 5: (6 điểm) Đáp án I Điểm Vẽ hình 0,5 điểm B M C H K E
  4. a/ (1,5điểm) Xét và có : AM = EM (gt ) = (đối đỉnh ) BM = MC (gt ) Nên : = (c.g.c ) AC = EB Vì = = (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . b/ (2 điểm ) Xét và có : AM = EM (gt ) = ( vì ) AI = EK (gt ) Nên ( c.g.c ) 1 điểm Suy ra = Mà + = 180o ( tính chất hai góc kề bù ) + = 180o Ba điểm I;M;K thẳng hàng 1 điểm c/ (2 điểm ) Trong tam giác vuông BHE ( = 90o ) có = 50o = 90o - = 90o - 50o =40o 0,5 điểm o o o = - = 40 - 25 = 15 0,5 điểm là góc ngoài tại đỉnh M của Nên = + = 15o + 90o = 105o (định lý góc ngoài của tam giác) 1 điểm Lưu ý: Nếu học sinh làm theo cách khác đúng vẫn đạt điểm tối đa.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2