intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01

Chia sẻ: Nguyễn Thị Thảo Nguyên | Ngày: | Loại File: PDF | Số trang:5

133
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01 gồm các câu hỏi tự luận có đáp án giúp cho các bạn học sinh lớp 12 có thêm tư liệu tham khảo phục vụ cho ôn tập thi cử.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01

  1. TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 01 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = (1 - x )2 (4 - x ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm m để phương trình sau đây có 3 nghiệm phân biệt: x 3 - 6x 2 + 9x - 4 + m = 0 Câu II (3,0 điểm): 1) Giải phương trình: 22x + 1 - 3.2x - 2 = 0 1 x 2) Tính tích phân: I = ò (1 + x )e dx 0 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = e x (x 2 - x - 1) trên đoạn [0;2]. Câu III (1,0 điểm): Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích của hình chóp. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho A (2;0; - 1), B (1; - 2; 3),C (0;1;2) . 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Tìm toạ độ hình chiếu vuông góc của gốc toạ độ O lên mặt phẳng (A BC ) . Câu Va (1,0 điểm): Tìm số phức liên hợp của số phức z biết rằng: z + 2z = 6 + 2i . 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho A (2;0; - 1), B (1; - 2; 3),C (0;1;2) 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Viết phương trình mặt cầu tâm B, tiếp xúc với đường thẳng AC. Câu Vb (1,0 điểm): Tính môđun của số phức z = ( 3 - i )2011 .
  2. ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... BÀI GIẢI CHI TIẾT. Câu I : y = (1 - x )2 (4 - x ) = (1 - 2x + x 2 )(4 - x ) = 4 - x - 8x + 2x 2 + 4x 2 - x 3 = - x 3 + 6x 2 - 9x + 4  y = - x 3 + 6x 2 - 9x + 4  Tập xác định: D = ¡  Đạo hàm: y ¢= - 3x 2 + 12x - 9 é = 1 x  Cho y ¢ = 0 Û - 3x 2 + 12x - 9 = 0 Û ê ê = 3 x ê ë  Giới hạn: lim y = + ¥ ; lim y = - ¥ x® - ¥ x® +¥  Bảng biến thiên x – 1 3 + y¢ – 0 + 0 – + 4 y 0 –  Hàm số ĐB trên khoảng (1;3), NB trên các khoảng (–;1), (3;+) Hàm số đạt cực đại y CÑ = 4 tại x CÑ = 3 ; y đạt cực tiểu y CT = 0 tại x CT = 1  y ¢ = - 6x + 12 = 0 Û x = 2 Þ y = 2 . Điểm uốn là I(2;2) ¢ é = 1 x 4  Giao điểm với trục hoành: y = 0 Û - x + 6x - 9x + 4 = 0 Û ê 3 2 ê = 4 êx ë 2 Giao điểm với trục tung: x = 0 Þ y = 4  Bảng giá trị: x 0 1 2 3 4 y 4 0 2 4 0 O 1 2 3 4 x  Đồ thị hàm số: nhận điểm I làm trục đối xứng như hình vẽ bên đây  (C ) : y = - x 3 + 6x 2 - 9x + 4 . Viết pttt tại giao điểm của (C ) với trục hoành.  Giao điểm của (C ) với trục hoành: A (1; 0), B (4;0)  pttt với (C ) tại A (1; 0) :  x 0 = 1 vaø 0 = 0 ü y ï ï Þ pt t t t aï A : y - 0 = 0(x - 1) Û y = 0 ý i  f ¢ x 0 ) = f ¢ = 0ï ( (1) ï þ  pttt với (C ) tại B (4; 0) :
  3.  x 0 = 4 vaø 0 = 0 y ü ï ï Þ pt t t t aï B : y - 0 = - 9(x - 4) Û y = - 9x + 36 i ý  f ¢x 0 ) = f ¢ = - ( (4) 9ï ï þ  Vậy, hai tiếp tuyến cần tìm là: y = 0 và y = - 9x + 36  Ta có, x 3 - 6x 2 + 9x - 4 + m = 0 Û - x 3 + 6x 2 - 9x + 4 = m (*)  (*) là phương trình hoành độ giao điểm của (C ) : y = - x 3 + 6x 2 - 9x + 4 và d : y = m nên số nghiệm phương trình (*) bằng số giao điểm của (C ) và d.  Dựa vào đồ thị ta thấy (*) có 3 nghiệm phân biệt khi và chỉ khi 0< m < 4  Vậy, với 0 < m < 4 thì phương trình đã cho có 3 nghiệm phân biệt. Câu II  22x + 1 - 3.2x - 2 = 0 Û 2.22x - 3.2x - 2 = 0 (*)  Đặt t = 2x (ĐK: t > 0), phương trình (*) trở thành é = 2 (nhan) t 2t - 3t - 2 = 0 Û ê 2 ê = - 1 (loai) t ê ë 2  Với t = 2: 2x = 2 Û x = 1  Vậy, phương trình (*) có nghiệm duy nhất x = 1. 1 x I = ò (1 + x )e dx 0 ìu = 1+ x ï ì du = dx ï  Đặt ï í ï Þ í . Thay vào công thức tích phân từng phần ta được: ï dv = e x dx ï ï v = ex ï ï î ï î 1 1 1 I = (1 + x )e x 0 - ò0 e x dx = (1 + 1)e 1 - (1 + 0)e 0 - e x 0 = 2e - 1 - (e 1 - e 0 ) = e 1 x  Vậy, I = ò (1 + x )e dx = e 0  Hàm số y = e x (x 2 - x - 1) liên tục trên đoạn [0;2]  y ¢ = (e x )¢ x 2 - x - 1) + e x (x 2 - x - 1)¢= e x (x 2 - x - 1) + e x (2x - 1) = e x (x 2 + x - 2) ( é = 1 Î [0;2] (nhan) x  Cho y ¢ = 0 Û e x (x 2 + x - 2) = 0 Û x 2 + x - 2 = 0 Û ê ê = - 2 Ï [0;2] (loai) x ê ë  Ta có, f (1) = e 1(12 - 1 - 1) = - e f (0) = e 0 (02 - 0 - 1) = - 1
  4. f (2) = e 2 (22 - 2 - 1) = e 2  Trong các kết quả trên, số nhỏ nhất là - e và số lớn nhất là e 2  Vậy, min y = - e khi x = 1; max y = e 2 khi x = 2 [0;2] [0;2] Câu III S  Gọi O là tâm của mặt đáy thì SO ^ (A BCD ) do đó SO là đường cao của hình chóp và hình chiếu của SB lên mặt đáy là BO, · do đó SBO = 600 (là góc giữa SB và mặt đáy) · SO · BD · A D  Ta có, t an SBO = Þ SO = BO . t an SBO = . t an SBO BO 2 60 O = a 2. t an 600 = a 6 B 2a C  Vậy, thể tích hình chóp cần tìm là 1 1 1 4a 3 6 V = B .h = A B .BC .SO = 2a .2a .a 6 = 3 3 3 3 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: Với A (2;0; - 1), B (1; - 2; 3),C (0;1;2) . uuur uuur Ta có hai véctơ: A B = (- 1; - 2; 4) , A C = (- 2;1; 3) uuu uuu r r æ- 2 4 4 - 1 - 1 - 2 ö ÷ r ç ÷ = (- 10; - 5; - 5) ¹ 0 Þ A , B , C không thẳng  [A B , A C ] = ç ç 1 3;3 - 2;- 2 ÷ ÷ ç ç è 1ø ÷ hàng.  Điểm trên mp (A BC ) : A (2; 0; - 1) r uuu uuu r r  vtpt của mp (A BC ) : n = [A B , A C ] = (- 10; - 5; - 5)  Vậy, PTTQ của mp (A BC ) : A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0 Û - 10(x - 2) - 5(y - 0) - 5(z + 1) = 0 Û - 10x - 5y - 5z + 15 = 0 Û 2x + y + z - 3 = 0 r  Gọi d là đường thẳng qua O và vuông góc với mặt phẳng (a ) , có vtcp u = (2;1;1) ì x = 2t ï ï ï  PTTS của d : ï y = t . Thay vào phương trình mp (a ) ta được: í ï ïz = t ï ï î 2(2t ) + (t ) + (t ) - 3 = 0 Û 6t - 3 = 0 Û t = 1 2  Vậy, toạ độ hình chiếu cần tìm là H (1; 1 ; 2 ) 2 1 Câu Va:  Đặt z = a + bi Þ z = a - bi , thay vào phương trình ta được
  5. a + bi + 2(a - bi ) = 6 + 2i Û a + bi + 2a - 2bi = 6 + 2i Û 3a - bi = 6 + 2i ì 3a = 6 ï ìa = 2 ï Û íï Û ï Þ z = 2 - 2i Þ z = 2 + 2i í ï- b = 2 ï ïb = - 2 ï î î  Vậy, z = 2 + 2i THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: Với A (2;0; - 1), B (1; - 2; 3),C (0;1;2) .  Bài giải hoàn toàn giống bài giải câu IVa (phần của ban cơ bản): đề nghị xem lại phần trên r uuur  Đường thẳng AC đi qua điểm A (2; 0; - 1) , có vtcp u = A C = (- 2;1; 3) uuur  Ta có, A B = (- 1; - 2; 4) r uuu r u = A C = (- 2;1; 3) . Suy ra uuu r r æ- 2 4 4 - 1 - 1 - 2 ö ÷ ç ÷ = (- 10; - 5; - 5) [A B , u ] = ç ç 1 3;3 - 2;- 2 ÷ ÷ ç ç è 1ø ÷  Áp dụng công thức khoảng cách từ điểm B đến đường thẳng AC ta được uuu r r [A B , u ] (- 10)2 + (- 5)2 + (- 5)2 15 d (B , A C ) = r = = u (- 2)2 + (1)2 + (32 ) 14 15  Mặt cầu cần tìm có tâm là điểm B (1; - 2;3) , bán kính R = d (B , A C ) = nên có pt 14 225 (x - 1)2 + (y + 2)2 + (z - 3)2 = 14 Câu Vb: Ta có, ( 3 - i ) = ( 3) - 3.( 3) .i + 3. 3.i - i = 3 3 - 9i - 3 3 + i = - 23.i 3 3 2 2 3  Do đó, 670 ( 3 - i )2010 = é 3 - i )3 ù = (- 23 i )670 = 22010.i 670 = 22010.(i 4 )167 .i 2 = - 22010 ( ê ë ú û Vậy, z = ( 3 - i )2011 = - 22010.( 3 - i ) Þ z = 22010. ( 3)2 + 12 = 2011
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2