Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01
lượt xem 9
download
Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01 gồm các câu hỏi tự luận có đáp án giúp cho các bạn học sinh lớp 12 có thêm tư liệu tham khảo phục vụ cho ôn tập thi cử.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 01
- TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 01 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = (1 - x )2 (4 - x ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm m để phương trình sau đây có 3 nghiệm phân biệt: x 3 - 6x 2 + 9x - 4 + m = 0 Câu II (3,0 điểm): 1) Giải phương trình: 22x + 1 - 3.2x - 2 = 0 1 x 2) Tính tích phân: I = ò (1 + x )e dx 0 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = e x (x 2 - x - 1) trên đoạn [0;2]. Câu III (1,0 điểm): Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích của hình chóp. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho A (2;0; - 1), B (1; - 2; 3),C (0;1;2) . 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Tìm toạ độ hình chiếu vuông góc của gốc toạ độ O lên mặt phẳng (A BC ) . Câu Va (1,0 điểm): Tìm số phức liên hợp của số phức z biết rằng: z + 2z = 6 + 2i . 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho A (2;0; - 1), B (1; - 2; 3),C (0;1;2) 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Viết phương trình mặt cầu tâm B, tiếp xúc với đường thẳng AC. Câu Vb (1,0 điểm): Tính môđun của số phức z = ( 3 - i )2011 .
- ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... BÀI GIẢI CHI TIẾT. Câu I : y = (1 - x )2 (4 - x ) = (1 - 2x + x 2 )(4 - x ) = 4 - x - 8x + 2x 2 + 4x 2 - x 3 = - x 3 + 6x 2 - 9x + 4 y = - x 3 + 6x 2 - 9x + 4 Tập xác định: D = ¡ Đạo hàm: y ¢= - 3x 2 + 12x - 9 é = 1 x Cho y ¢ = 0 Û - 3x 2 + 12x - 9 = 0 Û ê ê = 3 x ê ë Giới hạn: lim y = + ¥ ; lim y = - ¥ x® - ¥ x® +¥ Bảng biến thiên x – 1 3 + y¢ – 0 + 0 – + 4 y 0 – Hàm số ĐB trên khoảng (1;3), NB trên các khoảng (–;1), (3;+) Hàm số đạt cực đại y CÑ = 4 tại x CÑ = 3 ; y đạt cực tiểu y CT = 0 tại x CT = 1 y ¢ = - 6x + 12 = 0 Û x = 2 Þ y = 2 . Điểm uốn là I(2;2) ¢ é = 1 x 4 Giao điểm với trục hoành: y = 0 Û - x + 6x - 9x + 4 = 0 Û ê 3 2 ê = 4 êx ë 2 Giao điểm với trục tung: x = 0 Þ y = 4 Bảng giá trị: x 0 1 2 3 4 y 4 0 2 4 0 O 1 2 3 4 x Đồ thị hàm số: nhận điểm I làm trục đối xứng như hình vẽ bên đây (C ) : y = - x 3 + 6x 2 - 9x + 4 . Viết pttt tại giao điểm của (C ) với trục hoành. Giao điểm của (C ) với trục hoành: A (1; 0), B (4;0) pttt với (C ) tại A (1; 0) : x 0 = 1 vaø 0 = 0 ü y ï ï Þ pt t t t aï A : y - 0 = 0(x - 1) Û y = 0 ý i f ¢ x 0 ) = f ¢ = 0ï ( (1) ï þ pttt với (C ) tại B (4; 0) :
- x 0 = 4 vaø 0 = 0 y ü ï ï Þ pt t t t aï B : y - 0 = - 9(x - 4) Û y = - 9x + 36 i ý f ¢x 0 ) = f ¢ = - ( (4) 9ï ï þ Vậy, hai tiếp tuyến cần tìm là: y = 0 và y = - 9x + 36 Ta có, x 3 - 6x 2 + 9x - 4 + m = 0 Û - x 3 + 6x 2 - 9x + 4 = m (*) (*) là phương trình hoành độ giao điểm của (C ) : y = - x 3 + 6x 2 - 9x + 4 và d : y = m nên số nghiệm phương trình (*) bằng số giao điểm của (C ) và d. Dựa vào đồ thị ta thấy (*) có 3 nghiệm phân biệt khi và chỉ khi 0< m < 4 Vậy, với 0 < m < 4 thì phương trình đã cho có 3 nghiệm phân biệt. Câu II 22x + 1 - 3.2x - 2 = 0 Û 2.22x - 3.2x - 2 = 0 (*) Đặt t = 2x (ĐK: t > 0), phương trình (*) trở thành é = 2 (nhan) t 2t - 3t - 2 = 0 Û ê 2 ê = - 1 (loai) t ê ë 2 Với t = 2: 2x = 2 Û x = 1 Vậy, phương trình (*) có nghiệm duy nhất x = 1. 1 x I = ò (1 + x )e dx 0 ìu = 1+ x ï ì du = dx ï Đặt ï í ï Þ í . Thay vào công thức tích phân từng phần ta được: ï dv = e x dx ï ï v = ex ï ï î ï î 1 1 1 I = (1 + x )e x 0 - ò0 e x dx = (1 + 1)e 1 - (1 + 0)e 0 - e x 0 = 2e - 1 - (e 1 - e 0 ) = e 1 x Vậy, I = ò (1 + x )e dx = e 0 Hàm số y = e x (x 2 - x - 1) liên tục trên đoạn [0;2] y ¢ = (e x )¢ x 2 - x - 1) + e x (x 2 - x - 1)¢= e x (x 2 - x - 1) + e x (2x - 1) = e x (x 2 + x - 2) ( é = 1 Î [0;2] (nhan) x Cho y ¢ = 0 Û e x (x 2 + x - 2) = 0 Û x 2 + x - 2 = 0 Û ê ê = - 2 Ï [0;2] (loai) x ê ë Ta có, f (1) = e 1(12 - 1 - 1) = - e f (0) = e 0 (02 - 0 - 1) = - 1
- f (2) = e 2 (22 - 2 - 1) = e 2 Trong các kết quả trên, số nhỏ nhất là - e và số lớn nhất là e 2 Vậy, min y = - e khi x = 1; max y = e 2 khi x = 2 [0;2] [0;2] Câu III S Gọi O là tâm của mặt đáy thì SO ^ (A BCD ) do đó SO là đường cao của hình chóp và hình chiếu của SB lên mặt đáy là BO, · do đó SBO = 600 (là góc giữa SB và mặt đáy) · SO · BD · A D Ta có, t an SBO = Þ SO = BO . t an SBO = . t an SBO BO 2 60 O = a 2. t an 600 = a 6 B 2a C Vậy, thể tích hình chóp cần tìm là 1 1 1 4a 3 6 V = B .h = A B .BC .SO = 2a .2a .a 6 = 3 3 3 3 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: Với A (2;0; - 1), B (1; - 2; 3),C (0;1;2) . uuur uuur Ta có hai véctơ: A B = (- 1; - 2; 4) , A C = (- 2;1; 3) uuu uuu r r æ- 2 4 4 - 1 - 1 - 2 ö ÷ r ç ÷ = (- 10; - 5; - 5) ¹ 0 Þ A , B , C không thẳng [A B , A C ] = ç ç 1 3;3 - 2;- 2 ÷ ÷ ç ç è 1ø ÷ hàng. Điểm trên mp (A BC ) : A (2; 0; - 1) r uuu uuu r r vtpt của mp (A BC ) : n = [A B , A C ] = (- 10; - 5; - 5) Vậy, PTTQ của mp (A BC ) : A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0 Û - 10(x - 2) - 5(y - 0) - 5(z + 1) = 0 Û - 10x - 5y - 5z + 15 = 0 Û 2x + y + z - 3 = 0 r Gọi d là đường thẳng qua O và vuông góc với mặt phẳng (a ) , có vtcp u = (2;1;1) ì x = 2t ï ï ï PTTS của d : ï y = t . Thay vào phương trình mp (a ) ta được: í ï ïz = t ï ï î 2(2t ) + (t ) + (t ) - 3 = 0 Û 6t - 3 = 0 Û t = 1 2 Vậy, toạ độ hình chiếu cần tìm là H (1; 1 ; 2 ) 2 1 Câu Va: Đặt z = a + bi Þ z = a - bi , thay vào phương trình ta được
- a + bi + 2(a - bi ) = 6 + 2i Û a + bi + 2a - 2bi = 6 + 2i Û 3a - bi = 6 + 2i ì 3a = 6 ï ìa = 2 ï Û íï Û ï Þ z = 2 - 2i Þ z = 2 + 2i í ï- b = 2 ï ïb = - 2 ï î î Vậy, z = 2 + 2i THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: Với A (2;0; - 1), B (1; - 2; 3),C (0;1;2) . Bài giải hoàn toàn giống bài giải câu IVa (phần của ban cơ bản): đề nghị xem lại phần trên r uuur Đường thẳng AC đi qua điểm A (2; 0; - 1) , có vtcp u = A C = (- 2;1; 3) uuur Ta có, A B = (- 1; - 2; 4) r uuu r u = A C = (- 2;1; 3) . Suy ra uuu r r æ- 2 4 4 - 1 - 1 - 2 ö ÷ ç ÷ = (- 10; - 5; - 5) [A B , u ] = ç ç 1 3;3 - 2;- 2 ÷ ÷ ç ç è 1ø ÷ Áp dụng công thức khoảng cách từ điểm B đến đường thẳng AC ta được uuu r r [A B , u ] (- 10)2 + (- 5)2 + (- 5)2 15 d (B , A C ) = r = = u (- 2)2 + (1)2 + (32 ) 14 15 Mặt cầu cần tìm có tâm là điểm B (1; - 2;3) , bán kính R = d (B , A C ) = nên có pt 14 225 (x - 1)2 + (y + 2)2 + (z - 3)2 = 14 Câu Vb: Ta có, ( 3 - i ) = ( 3) - 3.( 3) .i + 3. 3.i - i = 3 3 - 9i - 3 3 + i = - 23.i 3 3 2 2 3 Do đó, 670 ( 3 - i )2010 = é 3 - i )3 ù = (- 23 i )670 = 22010.i 670 = 22010.(i 4 )167 .i 2 = - 22010 ( ê ë ú û Vậy, z = ( 3 - i )2011 = - 22010.( 3 - i ) Þ z = 22010. ( 3)2 + 12 = 2011
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Sơn La (Lần 2)
7 p | 5 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 - Trường THPT Chuyên Lam Sơn, Thanh Hóa (Lần 2)
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Trường THPT Võ Thị Sáu, Phú Yên
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Dương Quảng Hàm, Hưng Yên
14 p | 8 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Kim Liên, Nghệ An (Lần 4)
18 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Chuyên Đại học Vinh (Lần 2)
22 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Chuyên Hạ Long (Lần 3)
6 p | 12 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT A Nghĩa Hưng, Nam Định (Lần 2)
7 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Ngô Thì Nhậm, Ninh Bình (Lần 1)
26 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Nam Cao, Hà Nam (Lần 1)
14 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Sở GD&ĐT Đắk Lắk (Lần 2)
34 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Tĩnh Gia 2, Thanh Hóa
20 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Tháp Mười, Đồng Tháp
8 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Vật lý năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Sinh học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 8 | 1
-
Đề thi thử tốt nghiệp THPT môn GDCD năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Địa lí năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 11 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn