Đề Thi Thử Tốt Nghiệp THPT Môn TOÁN - THPTBC Đại Lộc - 2009
lượt xem 51
download
Tài liệu " Đề Thi Thử Tốt Nghiệp THPT Môn TOÁN - THPTBC Đại Lộc - 2009 " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập hoá học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình. Chúc các bạn học tốt.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề Thi Thử Tốt Nghiệp THPT Môn TOÁN - THPTBC Đại Lộc - 2009
- Trường THPTBC Đại Lộc ĐỀ THI TNTHPT NĂM 2009 Môn thi : TOÁN Thời gian làm bài 150 phút I/PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0điểm ) Câu 1: (3.0đ) x 1 Cho hàm số y = x 1 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2/ Viết phương trình tiếp tuyến với ( C ) tại điểm có tung độ bằng 2 . Câu 2: (3.0đ) 1/ Giải phương trình : log 2 x + log 4 x = log 2 3 e dx 2/ Tính tích phân : I = 1 x 1+lnx 3/ Tìm GTLN và GTNN của hàm số f(x) = 2 cos 2 x 4sin x trên đoạn 0; 2 Câu 3: (1.0đ) Cho tứ diện đều ABCD cạnh bằng 2a. Tính thể tích của khối tứ diện ABCD. II/PHẦN RIÊNG ( 3.0đ) Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó 1/ Theo chương trình chuẩn Câu 4: (2.đ) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;- 2;1) và mặt phẳng (P) có phương trình: 2x + y - z – 5 = 0 a )Viết PTTS của đường thẳng d đi qua A và vuông góc với mặt phẳng (P). b) Tìm tọa độ của điểm A/ đối xứng với A qua mặt phẳng (P) . Câu 5: (1.0đ) Giải phương trình : x 2 4 x 5 0 trên tập số phức . 1/ Theo chương trình nâng cao Câu 4: (2.0đ) Trong không gian với hệ trục tọa độ Oxyz ,cho đường thẳng d và mặt phẳng (P) có phương trình: x 2 y 1 z 1 (d): (P): 2x + y + z – 8 = 0 2 3 5 a ) Chứng tỏ (d) cắt (P) và không vuông góc với (P). Tìm giao điểm của (d) và (P). b) Viết phương trình tham số của đường thẳng (d1) nằm trong mặt phẳng (P), cắt (d) và vuông góc với (d) Câu 5: (1.0đ) Giải phương trình : x 2 5 x 7 0 trên tập số phức . = = = Hết = = =
- HƯỚNG DẪN VÀ ĐÁP ÁN I/Phần chung : (7.0đ) Câu1: (3.0đ) 1/Khảo sát và vẽ đồ thị (2.25đ) + TXĐ: D = R\{1} (0.25đ) 2 + y’ = (0.25đ) ( x 1) 2 + y’ < 0 x 1 Hàm số nghịch biến trên (- ;1); (1;+ ) (0.25đ) + lim y = + => Tiệm cận đứng x = 1 (0.25đ) x 1 + xlim y = 1 => Tiệm cận ngang y = 1 (0.25đ) + Bảng biến thiên: (0.5đ) x - 1 + y’ - - y 1 + . - 1 + Đồ thị (0,25đ): Điểm đặc biệt (0;-1); (-1;0) Giao điểm 2 tiệm cận I(1;1) + Vẽ: (0.25đ) 2/Phương trình tiếp tuyến (0.75đ) + Tìm được x o = 3 ( 0.25đ) 1 + Tính f / (x 0 ) = (0.25đ) 2 1 7 + Phương trình tiếp tuyến : y = - x + (0.25đ) 2 2 Câu2 : (3.0đ) 1/ (1.0đ) + ĐK : x > 0 (0.25đ)
- 1 + log 2 x + log 2 x = log 2 3 (0.25đ) 2 3 + log 2 x = log 2 3 (0.25đ) 2 +x= 33 (0.25đ ) 2/ (1.0đ) dx + đặt : t = 1+lnx dt= (0.25đ) x + x =1 t =1 , x = e t=2 (0.25đ) 2 dt 2 +I= =2 t 2 2 2 (0.5đđ ) 1 t 1 3/ ( 1.0đ) y 2 cos 2 x 4 sin x 2 1 2 sin2 x 4 sin x 2 2 sin 2 x 4 sin x 2 + Đặt t sin x ; t 1;1 .Do x 0; nên t 0;1 2 +Hàm số trở thành y 2 2t 2 4t 2, t 0;1 0.25đ 2 + y' 4 2t 4; y ' 0 t 0;1 . 0;25đ 2 + y 2 2 2; y 0 2; y 1 4 2. 0;25đ 2 2 So sánh các giá trị này ta được GTLN là 2 2 tại t = 0.25đ 2 GTNN là 2 tại t =0 . Câu 3: 1.0 đ. + Ghi đúng công thức thể tích 0,25 đ + Xác định và tính được chiều cao của khối tứ diện 0.25 đ + Tính đúng diện tích đáy 0,25 đ + Tính đúng thể tích 0,25 đ. II/Phần riêng ( 3.0đ) 1/Chương trình chuẩn : Câu4: (2đ) 1/ Phương trình TS của đường thẳng d + Đi qua A nhận vecttơ n (2;1; 1) làm VTCP 0.5đ x 1 2t + PTTS : y 2 t 0.5đ z 1 t 2/+ Tìm giao điểm I (3;-1;0) của d và mặt phẳng (P) 0.5đ + Tìm A/ (5;0;-1) 0.5đ Câu 5: (1đ) + Tính / =4 – 5 = i2 0.5đ
- +Nghiệm của phương trình : x 1 = 2 – i ; x 2 = 2 + i 0.5đ 2/Chương trình nâng cao (3đ) Câu 4: (2đ) 1/ + VTCP a (2;3;5) ; VTPT n ( 2;1;1) 0.25đ + a.n 12 suy ra d và (P ) không vuông góc 0.25 đ 8 8 + Tọa độ giao điểm I ( ;0; ) 0.5đ 3 3 2/+ VTCP của đường thẳng d 1 : b a; n = (-2;8;-4) 0.5đ 8 x 2t 3 + PTTS : y 8t 0.5đ 8 z 4t 3 Câu 5: (1đ) + Tính / = 25 – 28 = 3 i2 0.5đ 5 i 3 5 i 3 +Nghiệm của phương trình : x 1 = ; x2 = 0.5đ 2 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Sơn La (Lần 2)
7 p | 5 | 2
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Trường THPT Võ Thị Sáu, Phú Yên
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Địa lí năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Nam Định (Lần 2)
13 p | 10 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Bà Rịa - Vũng Tàu (Lần 2)
29 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT A Nghĩa Hưng, Nam Định (Lần 2)
7 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Chuyên Đại học Vinh (Lần 2)
22 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Kim Liên, Nghệ An (Lần 4)
18 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Nam Cao, Hà Nam (Lần 1)
14 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Sở GD&ĐT Đắk Lắk (Lần 2)
34 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Tĩnh Gia 2, Thanh Hóa
20 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Vật lý năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Tiếng Anh năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 10 | 1
-
Đề thi thử tốt nghiệp THPT môn Sinh học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn GDCD năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Kiên Giang
7 p | 2 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn