Đề thi thử tốt nghiệp THPT Toán - THPT Khâm Đức (2013-2014)
lượt xem 2
download
Để giúp bạn thêm phần tự tin trước kì thi tốt nghiệp. Hãy tham khảo đề thi thử tốt nghiệp THPT Toán - THPT Khâm Đức (2013-2014) để đạt được điểm cao hơn nhé
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tốt nghiệp THPT Toán - THPT Khâm Đức (2013-2014)
- SỞ GD&ĐT QUẢNG NAM ĐỀ THI THỬ TỐT NGHIỆP THPT TRƯỜNG THPT KHÂM ĐỨC NĂM HỌC 2013-2014 MÔN: TOÁN - Thời gian: 150 phút (KKGĐ) I. PHẦN DÙNG CHUNG CHO TẤT CẢ THÍ SINH ( 7, 0 Điểm ) 3 2 Câu I.(3đ). Cho hàm số y x 3x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó vuông góc với đường 1 thẳng (d) : y x 2011 . 9 Câu II. (3đ). x x 2 1. Giải phương trình: log 3 (3 1).log 3 (3 9) 8 2. Tìm giá trị lớn trị lớn nhất và giá trị nhỏ nhất của hàm số sau: f(x) = x 4 - 18x 2 +2 trên đoạn 1;4 2 3. Tính tích phân sau : I (ecos x 3x)sin xdx 0 Câu III. (1đ). Cho hình chóp S .ABC có đáy ABC là tam giác đều, các cạnh bên đều bằng a , góc giữa cạnh bên và mặt đáy bằng 300 . Tính thể tích khối chóp S .ABC theo a . II. PHẦN RIÊNG (3,0 Điểm) Thí sinh chỉ được chọn một trong 2 phần (phần 1 hoặc phần 2 ) 1. Theo chương trình chuẩn : Câu IV.a (2đ). Trong không gian Oxyz, cho mp(Q) và mặtcầu (S) lần lượt có phương trình: x + y + z - 5 = 0; x2 + y2 + z2- 2x + 2y - 4z - 3 =0. 1. Viết phương trình tham số của đường thẳng d đi qua tâm mặt cầu (S) và vuông góc với mp(Q). 2. Viết phương trình tổng quát của mp(P) song song với Oz, vuông góc với mp(Q) và tiếp xúc với mặt cầu (S). 2 Câu V.a ( 1đ). Cho số phức: z 1 2i 2 i . Tính : z và A z.z 2. Theo chương trình nâng cao : Câu IV.b (2đ). Trong không gian với hệ tọa độ Oxyz cho điểm M(1; 1;1) , hai đường thẳng x 2 t. x 1 y z , y 4 t. và mặt phẳng (P) : y 2 z 0 ( ): 1 1 1 4 2 z 1. 1. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng ( ) . 2 2. Viết phương trình đường thẳng cắt cả hai đường thẳng ( ) ,( ) và nằm trong mp (P) . 1 2
- 5 3 3i 2010 Câu V.b (1đ). Cho số phức z . Viết dạng lượng giác của số phức z và Tính: z . 1 2 3i -------------------------------------------------HẾT------------------------------------------------- * Lưu ý: Học sinh không được sử dụng bất cứ tài liệu nào. SỞ GD&ĐT QUẢNG NAM ĐÁP ÁN THI THỬ TỐT NGHIỆP THPT TRƯỜNG THPT KHÂM ĐỨC NĂM HỌC 2013-2014 MÔN: TOÁN - Thời gian: 150 phút (KKGĐ) I. PHẦN DÙNG CHUNG CHO TẤT CẢ THÍ SINH ( 7, 0 Điểm ) Câu Đáp án Điểm I ( 3điểm) 1) (2 điểm) TXĐ: D R 0,25 Sự biến thiên x 0 y 1 Chiều biến thiên: y ' 3 x 2 6 x , y ' 0 3 x 2 6 x 0 x 2 y 3 0,25 Suy ra hàm số nghịch biến trên ; 0 và 2;+ , đồng biến trên 0;2 0,25 Cực trị: hàm số có 2 cực trị + Điểm cực đại: x 2 yc® = 3 + Điểm cực đại: x 0 yct 1 Giới hạn: xlim y xlim y ; xlim y 0,25 Suy ra đồ thị hàm số không có tiệm cận . Bảng biến thiên: x 0 2 y' - 0 + 0 - 3 0,5 y CĐ -1 CT
- Đồ thị: ĐĐB: x -1 0 1 2 3 y 3 -1 1 3 -1 y 4 3 2 0,5 O 3 -1 2 5 x -1 -2 2) (1 điểm) Tiếp tuyến của (C) có dạng y y0 f '( x0 )( x x0 ) 0,25 2 x 0 1 y0 3 Trong đó: f '( x 0 ) 9 3 x0 6 x0 9 0 0,50 x 0 3 y0 1 y 9 x 6 Vậy có hai phương trình tiếp tuyến của (C) là: 0,25 y 9 x 26 II (3điểm) 1) (1 điểm) log 3 (3x 1) log 3 (3x 2 9) 8 log 3 (3x 1) log 3 32 (3x 1) 8 0,25 log 3 (3x 1) log 3 32 log 3 (3x 1) 8 Đặt t = log 3 (3 x 1) log 3 1 0 ta có phương trình 0,25 t 2 t (2 t ) 8 t 2 2t 8 0 t 4 0,25 Từ điều kiện t > 0 ta có log 3 (3x 1) 2 3x 1 32 x log 3 8 3log 3 2 0,25 2) (1 điểm) f ‘(x) = 4 x 3 36 x 0,25 x 0 1; 4 f ‘(x) = 4 x 3 36 x = 0 x 3 1; 4 0,25 x 3 1; 4 (loai ) f(0) = 2; f(3) = -79 ; f(-1) = -15 ; f(4) = -30
- Vậy max f ( x) 2 ; min f ( x) 79 0,25 1; 4 1; 4 0,25 3) (1 điểm) 2 2 I e cos x sin x.dx 3 x.sin x.dx M N 0,25 0 0 2 cos x cos x 2 M e d (cos x ) e e 1 0 0,25 0 2 N 3 x sin x.dx 0 2 u 3 x du 3dx Đặt N 3x cos x 02 3 cos x.dx 3 0,25 dv sin xdx v cos x 0 I M N e 1 3 e 4 0,25 III.(1điểm) Gọi O là tâm của tam giác đều ABC ,gọi H là trung điểm của BC Vì SA SB SC a nên SO (ABC) a Do đó SAO 300 , SO SA.sin 300 , 0,25 2 a 3 3 3 3a 3a 3 AO , AH AO 0,25 2 2 4 2 2 3a Vì ABC là tam giác đều nên BC 2 1 1 3a 3 3a 9 3a 2 0.25 Diện tích đáy S ABC BC. AH . . 2 2 2 4 16 1 1 9 3a 2 a 3 3a 3 Do đó thể tích khối chóp S .ABC là VS . ABC S ABC .SO . . 0.25 3 3 16 2 32 IV (2 II. PHẦN RIÊNG ( 3, 0 Điểm )
- điểm) 1. (1 điểm) + Mặt cầu (S) có tâm I(1,-1,2) 0,25 + Mp(Q) có vectơ pháp tuyến là nQ = (1,1,1) 0,25 x 1 t 0,50 + Pt tham số của đường thẳng d: y 1 t ; t z 2t 2. (1 điểm) + Gọi n là vectơ pháp tuyến của mp(P); R bán kính (S), R=3 0,25 + mp(P) song song hoặc chứa u =(0,0,1); nQ = (1,1,1) nên n u, nQ = (-1,1,0) 0,25 11 D D 2 3 2 3 D2 3 2 11 D 2 3 2 0,25 x y 23 2 0 Vậy có 2mp thoả mãn yêu cầu. 0,25 x y 23 2 0 V.a + Số phức z=(1-2i)(2+i)2 = (1-2i)(3+4i)= 11- 2i 0,25 (1 điểm) => z =11+2i. 0,25 z 5 5 0,25 2 2 Nên A= z. z =(11-2i)(11+2i)= 11 + 2 =125. Vậy A= 125. 0,25 IV.b 1. (2 điểm) (2 điểm) 1. (1 điểm) 1,00 Véctơ chỉ phương của ( 2 ) là: u2 (1;1;0) . N thuộc ( 2 ) nên N=(2-t;4+t;1). 0,25 0,25 MN (1 t ;5 t ;0) Vì N là hình chiếu vuông góc của M lên ( 2 ) , nên MN u2 MN .u2 0 -1+t+5+t=0 t= -2 0,25 Vậy N=(4;2;1). 0,25 2. (1 điểm) Giả sử ( 1 ) giao với (P) tại A , Ta có: t+8t=0 hay t=0 suy ra A(1;0;0). 0,25 ( 2 ) giao với (P) tại B, ta có: 4+t+2=0 hay t=-6 . Suy ra B=(8;-2;1). 0,25 AB (7; 2;1) . 0,25 x 1 7t Đường thẳng cần có phương trình tham số: y 2t z t 0,25 V.b (1 điểm) (1điểm)
- (5 3 3i )(1 2 3i ) 13 13 3i 0,25 Ta có z 2 2 1 3i (1 2 3i )(1 2 3i ) 1 (2 3) 1 3 2 2 0,25 2( i ) 2(cos i sin ) 2 2 3 3 2010 2010 0,25 z 2 (cos1340 i sin1340 ) Suy ra 22010 0,25 -----------------------------------------------------******----------------------------------------------
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Lịch sử có đáp án - Trường THPT Lý Thái Tổ
7 p | 181 | 15
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Liên trường THPT Nghệ An
16 p | 91 | 7
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Nguyễn Tất Thành, Gia Lai
204 p | 125 | 6
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Chuyên Nguyễn Trãi, Hải Dương
9 p | 105 | 5
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Hồng Lĩnh, Hà Tĩnh
7 p | 68 | 5
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Chuyên Biên Hòa
29 p | 117 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Phan Đình Phùng, Quảng Bình
5 p | 122 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Đồng Quan
6 p | 83 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Cầm Bá Thước
15 p | 66 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán - Trường Chuyên Võ Nguyên Giáp
6 p | 77 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Ngữ văn - Trường THPT Trần Phú
1 p | 84 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT chuyên ĐHSP Hà Nội
32 p | 56 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán - Trường THPT Đông Thụy Anh
6 p | 59 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Phụ Dực
31 p | 55 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 - Trường THPT Minh Khai, Hà Tĩnh
6 p | 61 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Sinh học có đáp án - Trường THPT Hồng Lĩnh (Lần 1)
4 p | 82 | 2
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán - Trường THPT Chuyên Hùng Vương, Gia Lai
7 p | 64 | 2
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán - Trường THPT Đặng Thúc Hứa
6 p | 35 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn