ĐỀ THI TUYỂN SINH ĐẠI HỌC - HỆ VỪA LÀM VỪA HỌC - ĐẠI HỌC MỞ TP. HCM
lượt xem 16
download
Câu I (2 điểm) Tính đạo hàm của các hàm số sau đây: 1. y = (x+2)lnx . 2. y = e x sin x cos x . Câu II (2 điểm) Cho hàm số y = x3 – 3x2 + m2x + m; m là tham số. 1. Khảo sát và vẽ đồ thị (C) của hàm số đã cho khi m = 0. 2. Tìm các giá trị của m để hàm số có cực trị. Câu III (2 điểm) Tính các tích phân sau đây : 1. ( x 1)sin 2 xdx . Câu IV (2 điểm) Trên...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI TUYỂN SINH ĐẠI HỌC - HỆ VỪA LÀM VỪA HỌC - ĐẠI HỌC MỞ TP. HCM
- (ĐỀ THI THAM KHẢO) BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC MỞ TP. HCM ĐỀ THI TUYỂN SINH ĐẠI HỌC - HỆ VỪA LÀM VỪA HỌC Môn thi: TOÁN (ĐỀ SỐ 1) Thời gian làm bài: 120 phút, không kể thời gian phát đề Câu I (2 điểm) Tính đạo hàm của các hàm số sau đây: 1. y = (x+2)lnx . 2. y = e x sin x cos x . Câu II (2 điểm) Cho hàm số y = x3 – 3x2 + m2x + m; m là tham số. 1. Khảo sát và vẽ đồ thị (C) của hàm số đã cho khi m = 0. 2. Tìm các giá trị của m để hàm số có cực trị. Câu III (2 điểm) Tính các tích phân sau đây : 1. ( x 1)sin 2 xdx . 4 tg 5 xdx . 2. 0 Câu IV (2 điểm) Trên mặt phẳng với hệ tọa độ Đề các Oxy cho các điểm A(1;2), B(– 1;– 1), C(3; – 1). 1. Chứng minh rằng ABC cân tại A. Tính diện tích ABC. 2. Lập phương trình các đường thẳng (AB), (CA). Câu V (2điểm) Trong không gian với hệ tọa độ Đề các vuông góc Oxyz cho các điểm A(0; – 1; 1), B(– 1; 2; 4) và đường thẳng x1 y z1 d: . 1 2 3 1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với d. 2. Tìm hình chiếu vuông góc của B trên (P). --------------------------------------------- Hết ---------------------------------------------- Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:……………………………………số báo danh:………………..
- ĐÁP ÁN ĐỀ SỐ 1 Câu I (2 điểm = 1 + 1) Tính đạo hàm của các hàm số sau đây: 1. y = (x+2)lnx . 2. y = e x sin x cos x . Giải 2 1. y' = lnx + 1 . x 2. y’ = e x sin x cos x (1 + cosx + sinx). Câu II (2 điểm = 1 + 1) Cho hàm số y = x3 – 3x2 + m2x + m (Cm). 1. Khảo sát và vẽ đồ thị (C) của hàm số đã cho khi m = 0. 2. Tìm các giá trị của m để hàm số có cực trị. Giải 1. Khảo sát hàm số khi m = 0 : y = x3 – 3x2 (C) Tập xác định : D = R. y' = 3x2 – 6x = 3x(x – 2). x0 y 0; y’ = 0 x2 y 4. y’’ = 6x – 6 = 6(x – 1). y’’ = 0 x = 1 y = – 2. Bảng biến thiên x – 0 2 + y' + 0 – 0 + + (CĐ) 0 y –4 (CT) – Tính lồi lõm
- y’’ = 6x – 6 = 6(x – 1). y’’ = 0 x = 1 y = – 2. 1 x –∞ +∞ y'' + ─ 0 (Điểm uốn) lồi lõm (1 ; 2 ) (C) Điểm đặc biệt: CĐ(0; 0), CT(2; – 4), ĐU(1; – 2). Đồ thị (C): 0 1 2 -2 -4 2. Tìm các giá trị của m để hàm số có cực trị. y' = 3x2 – 6x + m2; ’ = 3( 3 – m2). Hàm số có cực trị khi và chỉ khi y’ có hai nghiệm phân biệt và đổi dấu hai lần khi x đi qua các nghiệm. Tức là ’ = 3( 3 – m2) > 0 3. 3m Câu III (2 điểm = 1 + 1) Tính các tích phân sau đây : 1. ( x 1)sin 2 xdx .
- 4 tg 5 xdx . 2. 0 Giải 1. Tính I = ( x 1)sin 2 xdx . 1 Đặt u = x – 1; dv = sin2xdx du = dx; v = – cos2x. 2 1 1 I = udv uv vdu = (1 – x)cos2x + cos2xdx 2 2 1 = [ 2(1 – x)cos2x + sin2x ] + C . 4 4 4 2. Tính J = tg 5 xdx = [(tg 5 x tg 3 x) (tg 3 x tgx) tgx]dx 0 0 4 4 sin x = (tg 3 x tgx)(tg 2 x 1)dx dx cos x 0 0 4 4 d (cos x) 3 = (tg x tgx)d (tgx) cos x 0 0 tg 4 x tg 2 x 4 1 = = (2ln2 – 1) . ln cos x 4 4 2 0 Câu IV (2 điểm = 1 + 1) Trên mặt phẳng với hệ tọa độ Đề các Oxy cho các điểm A(1; 2), B(– 1;– 1), C(3; – 1). 1. Chứng minh rằng ABC cân tại A. Tính diện tích ABC. 2. Lập phương trình chính tắc các đường thẳng (AB), (CA). Giải 1. Chứng minh rằng ABC cân tại A. Tính diện tích ABC. AB = 13 = AC ( ABC cân tại A). xB xA yB yA 2 3 12 ; dt( ABC) = 12 = 12 (dvdt). xC xA yC yA 2 3
- 2. Lập phương trình chính tắc các đường (AB), (CA). x1 y1 x xB y yB (AB): . 2 3 x A xB y A yB x1 y2 x xA y yA (CA): . 2 3 xC x A yC y A Câu V (2điểm = 1 + 1) Trong không gian với hệ tọa độ Đề các vuông góc Oxyz cho các điểm A(0; – 1; 1), B(– 1; 2; 4) và đường thẳng x1 y z1 d: . 1 2 3 1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với d. 2. Tìm hình chiếu vuông góc của B trên (P). Giải 1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với d. (P) có vectơ pháp tuyến chính là vectơ chỉ phương của d: nP vd = (1; 2; 3) Phương trình của (P) là: (x – 0) + 2(y + 1) + 3(z – 1) = 0 x + 2y + 3z – 1 = 0 . 2. Tìm hình chiếu vuông góc của B trên (P). Gọi H là hình chiếu vuông góc của B trên (P). Đường thẳng (BH) nhận vd làm vectơ chỉ phương nên có phương trình tham số như sau: x = – 1+ t, y = 2 + 2t, z = 4 + 3t. H là giao điểm của (BH) với (P). Tọa độ của H xác định bởi hệ x 1 t; y 2 2t; z 4 3t; x 2 y 3z 1 0. Giải hệ ta được H( 0 – 2; 0; 1) .
- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC - HỆ VỪA LÀM VỪA HỌC Môn thi: TOÁN (ĐỀ SỐ 2) TRƯỜNG ĐẠI HỌC MỞ TP. HCM Thời gian làm bài: 120 phút, không kể thời gian phát đề Câu I (2 điểm) Tính đạo hàm của các hàm số sau đây: 1. y = xsin(2x+3) . 2. y = ln(sinx – cosx) . x2 x 2 Câu II (2 điểm) Cho hàm số y = . x2 1. Khảo sát và vẽ đồ thị hàm số đã cho. 2. Biện luận theo tham số m số nghiệm của phương trình x2 x 2 m. x2 Câu III (2 điểm) Tính các tích phân sau đây : 1. (2 x 3)e x dx . 2 sin 4 x cos3 x dx . 2. 0 Câu IV (2 điểm) Trên mặt phẳng với hệ tọa độ Đề các Oxy cho các điểm A(– 1;– 1), B(– 1; 2), C(2; – 1). 1. Chứng minh rằng ABC vuông tại A. Tính diện tích ABC. 2. Lập phương trình trung tuyến AM của ABC. Câu V (2điểm) Trong không gian với hệ tọa độ Đề các vuông góc Oxyz cho điểm M(7;– 3; 9) và mặt phẳng (P): 3x – 2y + 4z – 5 = 0. 1. Viết phương trình tham số của đường thẳng d đi qua M và vuông góc với (P). 2. Tìm điểm M’ đối xứng với M qua (P). --------------------------------------------- Hết ---------------------------------------------- Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:……………………………………số báo danh:………………..
- ĐÁP ÁN ĐỀ SỐ 2 Câu I (2 điểm = 1 + 1) Tính đạo hàm của các hàm số sau đây: 1. y = xsin(2x + 3) . 2. y = ln(sinx – cosx) . Giải 1. y' = sin(2x +3) + 2xcos(2x + 3) . cos x sin x 2. y’ = . sin x cos x x2 x 2 Câu II (2 điểm = 1 + 1) Cho hàm số y = . x2 1. Khảo sát và vẽ đồ thị hàm số đã cho. 2. Biện luận theo m số nghiệm của phương trình x2 x 2 m. x2 Giải x2 x 2 4 1. Khảo sát hàm số: y = = – (x + 1) – C) x2 x2 Tập xác định : D = R\{2}. x2 4x y' = . ( x 2)2 x0 y 1; y’ = 0 x4 y 7. Tiệm cận đứng : x = 2; Tiệm cận xiên: y = – x – 1. Bảng biến thiên x -∞ 4 +∞ 2 0 y' 0 + + 0 ─ ─ +∞ +∞ -7 CĐ ∞ ∞ y 1 CT -∞ -∞ Đồ thị (C): y
- 2. Biện luận theo m số nghiệm của phương trình x2 x 2 m x2 m < – 7 hoặc m > 1: phương trình có 2 nghiệm phân biệt; m = – 7 hoặc m = 1: phương trình có 1 nghiệm; – 7 < m < 1: phương trình vô nghiệm. Câu III (2 điểm = 1 + 1) Tính các tích phân sau đây : 1. (2 x 3)e x dx . 2 sin 4 x cos3 x dx . 2. 0 Giải 1. Tính I = (2 x 3)e x dx . Đặt u = 2x + 3; dv = e x dx du = 2dx; v = e x .
- vdu = (2x + 3) e x – 2 e x dx = (2x + 1) e x + C . I = udv uv 2 2 s i n 4 x (1 2 2. Tính J = sin4 x cos3 x dx = s in x ) d (s in x) 0 0 2 = (sin 4 x sin 6 x)d (sin x) 0 sin 5 x sin 7 x 2 2 = = . 35 5 7 0 Câu IV (2 điểm = 1 + 1) Trên mặt phẳng với hệ tọa độ Đề các Oxy cho các điểm A(– 1; – 1), B(– 1; 2), C(2; – 1). 1. Chứng minh rằng ABC vuông tại A. Tính diện tích ABC. 2. Lập phương trình trung tuyến AM của ABC. Giải 1. AB (0;3), AC (3;0) ; AB. AC 0 . Do đó ABC vuông tại A. 9 1 Dt( ABC) = AB.AC = (dvdt). 2 2 11 2. M ; ; (AM): x – y = 0 . 22 Câu V (2điểm = 1 + 1) Trong không gian với hệ tọa độ Đề các vuông góc Oxyz cho điểm M(7;– 3; 9) và mặt phẳng (P): 3x – 2y + 4z – 5 = 0. 1. Viết phương trình tham số của đường thẳng d đi qua M và vuông góc với (P). 2. Tìm điểm M’ đối xứng với M qua (P). Giải 1. Viết phương trình tham số của đường thẳng d đi qua M và vuông góc với (P). vectơ chỉ phương của d chính là vectơ pháp tuyến của (P): vd nP = (3;– 2; 4) x 7 3t ; Phương trình tham số của d là: y 3 2t; z 9 4t. 3. Tìm điểm M’ đối xứng với M qua (P). Gọi H là hình chiếu vuông góc của M trên (P). H chính là giao điểm của d với (P). Tọa độ của H xác định bởi hệ
- x 7 3t; y 3 2t; z 9 4t; 3x 2 y 4 z 5 0. Giải hệ ta được H( 1; 1; 1). H chính là trung điểm của MM’ nên M’(– 5; 5;– 7) .
CÓ THỂ BẠN MUỐN DOWNLOAD
-
HD giải đề thi tuyển sinh Đại học năm 2013 môn HÓA khối B - Mã đề: 537
11 p | 2029 | 1611
-
Đề thi tuyển sinh Đại học môn Sinh học năm 2013
7 p | 199 | 18
-
Bài giải chi tiết Đề thi tuyển sinh Đại học năm 2014 môn Toán khối B
4 p | 120 | 12
-
Đề thi tuyển sinh đại học năm 2012 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 89 | 5
-
Đề thi tuyển sinh đại học năm 2010 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 86 | 5
-
Đề thi tuyển sinh đại học năm 2009 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 97 | 5
-
Đề thi tuyển sinh đại học năm 2005 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
0 p | 152 | 5
-
Đề thi tuyển sinh đại học năm 2013 môn Toán, khối A & A1 (Đề chính thức) - Bộ GD&ĐT
1 p | 80 | 5
-
Đề thi tuyển sinh đại học, cao đẳng năm 2007 môn Toán, khối B - Bộ GD&ĐT
1 p | 134 | 5
-
Đề thi tuyển sinh đại học, cao đẳng năm 2007 môn Toán, khối A - Bộ GD&ĐT
1 p | 102 | 4
-
Đề thi tuyển sinh đại học năm 2011 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 78 | 4
-
Đề thi tuyển sinh đại học năm 2008 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 105 | 4
-
Đề thi tuyển sinh đại học, cao đẳng năm 2002 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 142 | 4
-
Đề thi tuyển sinh đại học, cao đẳng năm 2003 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 97 | 4
-
Đề thi tuyển sinh đại học năm 2007 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 95 | 3
-
Đề thi tuyển sinh đại học, cao đẳng năm 2007 môn Toán, khối D - Bộ GD&ĐT
1 p | 104 | 3
-
Đề thi tuyển sinh đại học năm 2006 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 114 | 3
-
Đề thi tuyển sinh đại học, cao đẳng năm 2004 môn Toán, khối A (Đề chính thức) - Bộ GD&ĐT
1 p | 114 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn