Đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2019-2020 – Sở Giáo dục và Đào tạo Bình Định (Đề chính thức)
lượt xem 1
download
"Đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2019-2020 – Sở Giáo dục và Đào tạo Bình Định (Đề chính thức)" được biên soạn với mục tiêu hỗ trợ các bạn học sinh làm quen với cấu trúc đề thi, ôn luyện kiến thức hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2019-2020 – Sở Giáo dục và Đào tạo Bình Định (Đề chính thức)
- SỞ GIÁO DỤC VÀ DÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2019-2020 Đề chính thức Môn thi: Toán Ngày thi: 06/06/2019 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: 1. Giải phương trình: 3( x 1) 5 x 2 . 2. Cho biểu thức: A x 2 x 1 x 2 x 1 với x 1 a) Tính giá trị biểu thức A khi x 5 . b) Rút gọn biểu thức A khi 1 x 2 . Câu 2: 1. Cho phương trình: x 2 (m 1) x m 0 . Tìm m để phương trình trên có một nghiệm bằng 2 . Tính nghiệm còn lại. 2. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng d1 : y 2 x 1; d2 : y x; d3 : y 3 x 2. Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng d 3 đồng thời đi qua giao điểm của hai đường thẳng d1 và d 2 . 2 Câu 3: Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được công việc. Nếu làm 3 riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? Câu 4: Cho đường tròn tâm O , bán kính R và một đường thẳng d không cắt đường tròn (O ) . Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H . Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn (O ) , ( A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK . a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I . Chứng minh rằng IA IB IH IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK 2 R, OH R 3 . Tính diện tích tam giác KAI theo R . x y x2 y 2 Câu 5: Cho x, y là hai số thực thỏa . Tìm giá trị nhỏ nhất của biểu thức P . xy 1 x y
- LỜI GIẢI ĐỀ TUYỂN SINH VÀO 10 BÌNH ĐỊNH NĂM HỌC 2019-2020 Câu 1. 1. Giải phương trình: 3( x 1) 5 x 2 . 2. Cho biểu thức: A x 2 x 1 x 2 x 1 với x 1 a) Tính giá trị biểu thức A khi x 5 . b) Rút gọn biểu thức A khi 1 x 2 . Lời giải 1. Ta có 5 3( x 1) 5 x 2 3 x 3 5 x 2 2 x 5 x . 2 5 Vậy phương trình đã cho có nghiệm là x . 2 2. a) Khi x 5 , ta có A 5 2 5 1 5 2 5 1 5 2 4 5 2 4 5 2 2 5 2 2 9 1 3 1 4 . Vậy khi x 5 thì A 4 . b) Với 1 x 2 , ta có A x 2 x 1 x 2 x 1 x 1 2 x 1 1 x 1 2 x 1 1 ( x 1 1)2 ( x 1 1)2 | x 1 1| | x 1 1| x 1 11 x 1 (1 x 2 0 x 1 1 x 1 1 0) 2. Vậy khi 1 x 2 thì A 2 . Câu 2. 1. Cho phương trình: x 2 (m 1) x m 0 . Tìm m để phương trình trên có một nghiệm bằng 2 . Tính nghiệm còn lại. 2. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng d1 : y 2 x 1; d2 : y x; d3 : y 3 x 2. Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng d 3 đồng thời đi qua giao điểm của hai đường thẳng d1 và d 2 . Lời giải 1. x 2 (m 1) x m 0. (1) Thay x 2 vào phương trình (1) ta được
- 22 ( m 1) 2 m 0 4 2 m 2 m 0 3m 6 m 2. Thay m 2 vào phương trình (1) ta được x 2 x 2 0. Ta có các hệ số: a b c 0 nên phương trình có hai nghiệm phân biệt là x1 1; x2 2 . Vậy với m 2 phương trình đã cho có một nghiệm bằng 2 , nghiệm còn lại là 1 . 2. Phương trình đường thẳng d : ax b ( a, b ) . a 3 d d3 d : y 3x b , (b 2). b 2 Tọa độ giao điểm của hai đường thẳng d1 , d 2 là nghiệm của hệ phương trình y 2 x 1 x 2 x 1 x 1 A(1;1) y x y x y 1 A(1;1) d : y 3 x b 1 3 1 b b 4 (TM). Vậy phương trình đường thẳng cần tìm là d : y 3 x 4 . 2 Câu 3. Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được công việc. Nếu làm 3 riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? Lời giải Gọi thời gian đội thứ nhất làm riêng hoàn thành công việc là x (giờ, x 5 ). Thời gian đội thứ hai làm riêng hoàn thành công việc là y (giờ, y 0 ). 1 1 Mỗi giờ đội thứ nhất làm được công việc, đội thứ hai làm được công việc. x y 4 4 Trong 4 giờ đội thứ nhất làm được công việc, đội thứ hai làm được công x y việc. Theo đề ta có hệ phương trình 4 4 2 (1) x y 3 x y 5 (2) (2) x y 5 thế vào (1) ta được 4 4 2 6 y 6( y 5) y ( y 5) y5 y 3 y 3 (ktm) y 2 7 y 30 0 y 10 x 15 Vậy nếu làm riêng thì thời gian hoàn thành công việc của đội thứ nhất là 15 giờ, đội thứ hai là 10 giờ.
- Câu 4. Cho đường tròn tâm O , bán kính R và một đường thẳng d không cắt đường tròn (O ) . Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H . Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn (O ) , ( A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK . a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I . Chứng minh rằng IA IB IH IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK 2 R, OH R 3 . Tính diện tích tam giác KAI theo R . Lời giải 90 ( KA AO) , a) Ta có KAO 90 (OH KH ) KHO KBO Xét tứ giác KAOH có KAO 180 nên là tứ giác nội tiếp. KAO b) Ta có KBO 180 nên KAOB là tứ giác nội tiếp và đỉnh H , B, A cùng nhìn cạnh OK dưới một góc vuông nên năm điểm K , A, B, O, H cùng thuộc đường tròn đường kính OK BIO Xét tam giác IAH và tam giác IOB có HIA (đối đỉnh) và AHI ABO (hai góc nội tiếp IA IO cùng chắn cung AO ). Do đó IAH IOB ( g .g ) IA IB IH IO . IH IB Xét tứ giác AOBH có OHB là góc nội tiếp chắn cung OB, OBA là góc nội tiếp chắn cung OA; Mà OA OB R nên OHB OBA . Xét OIB và OBH có BOH góc chung và OHB OBA (cmt). OI OB OB 2 R 2 Do đó OIB OBH (g .g ) OI . OB OH OH OH Ta lại có đường thẳng d cố định nên OH không đổi ( OH d ). Vậy điểm I cố định khi K chạy trên đường thẳng d cố định. c) Gọi M là giao điểm của OK và AB Theo tính chất tiếp tuyến ta có KA=KB; Lại có OA OB R nên OK là đường trung trực của AB, suy ra AB OK tại M và MA MB . R2 R2 R Theo câu b) ta có OI . OH R 3 3 Xét OAK vuông tại A , có OA2 R 2 R OA2 OM OK OM OK 2R 2 R 3R Suy ra KM OK OM 2 R 2 2 2 R 3R 3R R 3 AM 2 OM KM AM 2 2 4 2 Xét OMI vuông tại M , có 2 2 2 R R 2 R 3 MI OI OM 2 6 3 R 3 R 3 2R 3 Suy ra AI AM MI 2 6 3
- 1 1 3R 2 R 3 R 2 3 Diện tích AKI là S AI KM . 2 2 2 3 2 x y x2 y 2 Câu 5. Cho x, y là hai số thực thỏa . Tìm giá trị nhỏ nhất của biểu thức P . xy 1 x y Lời giải Với x y, xy 1 , ta có x 2 y 2 ( x y)2 2 xy 2 P x y x y x y x y 2 Vì x y x y 0; 0 và xy 1 . x y 2 Áp dụng bất đẳng thức Cô-si cho hai số dương x y; , ta có x y 2 2( x y ) x y 2 2 22 2 x y x y Suy ra min P 2 2 . 2 Dấu đẳng thức xảy ra x y (x y ) 2 2 x y 2 x y 2 . x y 6 2 y Mà xy 1 ( y 2) y 1 y 2 2 y 1 y 2 2 y 1 0 2 6 2 y 2 2 6 2 6 x x 2 2 Vậy min P 2 2 tại hoặc y 2 6 y 2 6 . 2 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án
66 p | 1866 | 112
-
Đề thi tuyển sinh vào lớp 10 năm 2017-2018 môn tiếng Anh - Sở GD&ĐT Kiên Giang
5 p | 692 | 76
-
Bộ đề thi tuyển sinh vào lớp 10 năm 2019-2020 có đáp án
146 p | 570 | 46
-
Đề thi tuyển sinh vào lớp 10 năm 2015-2016 môn tiếng Anh - Sở GD&ĐT Kiên Giang
6 p | 331 | 41
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Tiếng Anh có đáp án - Sở GD&ĐT Phú Thọ
8 p | 285 | 20
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2015-2016 - Sở GD&ĐT Bà rịa, Vũng Tàu
1 p | 287 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 - Sở GD&ĐT Hà Nội
1 p | 213 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Cao Bằng
3 p | 208 | 13
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2017-2018 có đáp án - Sở GD&ĐT TP Hồ Chí Minh
5 p | 157 | 11
-
Đề thi tuyển sinh vào lớp 10 năm 2016-2017 môn Toán - Sở GD&ĐT Kiên Giang
5 p | 96 | 10
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Phòng
11 p | 120 | 8
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hưng Yên (Đề chung)
5 p | 87 | 5
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Ninh Bình
4 p | 146 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Dương
6 p | 86 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nội
5 p | 67 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nam
5 p | 79 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Ngữ văn có đáp án - Sở GD&ĐT Nam Định
8 p | 153 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Quảng Ngãi
6 p | 60 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn