intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐĂK NÔNG

Chia sẻ: Thanh Nam | Ngày: | Loại File: DOC | Số trang:3

159
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐĂK NÔNG. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐĂK NÔNG

  1. Nguyễn Văn B SỞ GIÁO DỤC VÀ DÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 27 tháng 6 năm 2013 MÔN THI: Toán ĐỀ CHÍNH THỨC Th ời gian:120 phút (không kể thời gian giao đề) Câu 1:(2,0 điểm) Giải phương trình và hệ phương trình sau: a) x 2 + 1 = 5 b) { 2 x + 3 y =1 x − y =3 Câu 2:(1,5 điểm)Cho biểu thức sau: M= ( ) ( 2 x + 1 − x −1 + 2 8 ) 2 ( x > 0; x ≠ 1) x x+ x x −1 a) Rút gọn biểu thức M b) Tìm tất cả các giá trị của x để M > 0 1 2 Câu 3:(2,0 điểm) Cho parabol (P) : y = − x và đường thẳng (d) có 4 phương trình: y = ( m + 1) x + m 2 + 3 (với m là tham số). a) Vẽ parabol (P) b) Tìm tất cả giá trị của m để đường thẳng (d) và parabol (P) không có điểm chung. Câu 4: (3,5 điểm) Cho tam giác ABC có ba gọc nhọn nội tiếp đường tròn tâm O. Hai đường cao AD và BE của tam giác ABC cắt nhau tại H ( D ∈ BC; E ∈ AC ) .Chứng minh rằng: a) Tứ giác AEDB nội tiếp được trong một đường tròn; b) CE.CA = CD.CB; c) OC ⊥ DE . Câu 5: (1,0 điểm) Giải phương trình: ( x + 2) 4 + x 4 = 226 . ------------------HẾT---------------- (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh:......................................SBD:........................................... Giám thị 1:..................................................Giám thị 2:.................................. SBD: 170434
  2. Nguyễn Văn B Hướng dẫn giải: Câu 1: x2 +1 = 5 [ a) x=2 ⇔ x2 +1 = 5 ⇔ x2 = 4 ⇔ x = −2 { { { b) 2 x + 3 y =1 2 x + 3 y =1 x=2 x − y =3 ⇔ 3 x −3 y =9 ⇔ y = −1 Câu 2: a) M= ( ) ( 2 x + 1 − x −1 ) + 2 8 2 x x+ x x −1 x + 2 x +1− x + 2 x −1 8 = + 2 x ( x + 1) x −1 4 8 4 = + 2 = x +1 x −1 x −1 4 b) Để M > 0 ⇔ > 0 ⇔ x −1 > 0 ⇔ x > 1 x −1 Câu 3: a) Bạn tự vẽ b) Phương trình hoành độ giao điểm của (P) và (d) là: 1 2 x + ( m + 1) x + m 2 + 3 = 0 ⇔ x 2 + 4( m + 1) x + 4m 2 + 12 = 0 4 ∆ ' = 8m − 8 Để (P) và (d) không có điểm chung khi và chỉ khi ∆ ' < 0 ⇔ 8m − 8 < 0 ⇔ m < 1 Vậy để (P) và (d) không có điểm chung khi và chỉ khi m
  3. Nguyễn Văn B b) Xét ∆ABC đồng dạng với ∆DEC ˆ ˆ ABC = DEC (vì tứ giác AEBD nội tiếp) ˆ ACB chung  ∆ABC ~ ∆DEC (g.g) CA CB = ⇒ CA.CE = CB.CD CD CE c) Kẻ tiếp tuyến tại Cx (C nằm trên BC) ˆ ˆ ABC = DEC (vì tứ giác AEBD nội tiếp)  ˆ ˆ ABC = ECx (chắn cung AC ) ˆ ˆ  DEC = DEC ⇒ DE // Cx mà Cx ⊥ OC ⇒ DE ⊥ OC Câu 5: ( x + 2) 4 + x 4 = 226 Đặt x + 1 = t phương trình trở thành: ( t + 1) 4 + ( t − 1) 4 = 226 ⇔ t 4 + 4t 3 + 6t 2 + 4t + 1 + t 4 − 4t 3 + 6t 2 − 4t + 1 = 226 ( )( ⇔ t 4 + 6t 2 − 112 = 0 ⇔ t 2 − 8 t 2 + 14 = 0 ) ⇔ t = ±2 2 với t = 2 2 ⇒ x = 2 2 − 1 với t = −2 2 ⇒ x = −2 2 − 1 Kết luận: phương trình có 2 nghiệm. ----------------------------HẾT-------------------------- SBD: 170434
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2