Đề thi tuyển sinh vào lớp 10 THPT năm học 2014-2015 môn Toán (không chuyên) - SGD&ĐT Quảng Ngãi
lượt xem 20
download
Đề thi tuyển sinh vào lớp 10 THPT năm học 2014-2015 môn Toán (không chuyên) do SGD&ĐT Quảng Ngãi ban hành sau đây giúp cho các em học sinh trong việc nắm bắt được cấu trúc đề thi, dạng đề thi chính để có kế hoạch ôn thi một cách tốt hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm học 2014-2015 môn Toán (không chuyên) - SGD&ĐT Quảng Ngãi
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT QUẢNG NGÃI NĂM HỌC 20142015 MÔN : TOÁN (không chuyên) Ngày thi: 19/6/2014 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1: (1,5 điểm) a/ Tính: 2 25 3 4 b/ Xác định a và b để đồ thị hàm số y = ax + b đi qua điểm A(1; 2) và điểm B(3; 4) x 2 x 4 c/ Rút gọn biểu thức A = : với x 0 và x 4 x 2 x 2 x 2 Bài 2: (2,0 điểm) 1/ Giải phương trình x4 + 5x2 36 = 0 2/ Cho phương trình x2 (3m + 1)x + 2m2 + m 1 = 0 (1) với m là tham số. a/ Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m. b/ Gọi x1, x2 là các nghiệm của phương trình (1). Tìm m để biểu thức B = x 12 + x22 3x1x2 đạt giá trị lớn nhất. Bài 3: (2,0 điểm) Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số 20 lương thực, thực phẩm lên tàu là giờ. Hỏi nếu làm riêng một mình thì mỗi 7 người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu? Bài 4: (3,5 điểm) Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB; P là điểm thuộc cung MB (P khác M và P khác B). Đường thẳng AP cắt đường thẳng OM tại C; đường thẳng OM cắt đường thẳng BP tại D. Tiếp tuyến của nửa đường tròn ở P cắt cắt CD tại I. a/ Chứng minh OADP là tứ giác nội tiếp đường tròn. b/ Chứng minh OB.AC = OC.BD. c/ Tìm vị trí của điểm P trên cung MB để tam giác PIC là tam giác đều. Khi đó hãy tính diện tích của tam giác PIC theo R. Bài 5: (1,0 điểm) Cho biểu thức A = (4x5 + 4x4 5x3 + 5x 2)2014 + 2015. Tính giá trị của 1 2 1 biểu thức A khi x = . 2 2 1
- HẾT Giám thị coi thi không giải thích gì thêm
- GỢI Ý BÀI GIẢI TOÁN VÀO 10 KHÔNG CHUYÊN LÊ KHIẾT QUẢNG NGÃI. Bài 1: a/ Tính: 2 25 3 4 = 10 + 6 = 16 b/ Đồ thị hàm số y = ax + b đi qua A(1; 2) nên a + b = 2, và B(3; 4) nên 3a b = 4. Suy ra a = 3, b = 5. Vậy (d): y = 3x + 5 x 2 x 4 1 x 2 c/ Với x 0 và x 4 ta có:A = : = …..= x 2 x 2 x 2 x 2 x 4 Bài 2: 1/ Giải phương trình x4 + 5x2 36 = 0 Đặt t = x2 ( t 0) ta có phương trình t2 + 5t 36 = 0. t = 25 4.1.( 36) = 169 t1 = 4 (tmđk); t2 = 9 (loại). Với t = 4 x2 = 4 x = 2 2/ a/ Với m là tham số, phương trình x2 (3m + 1)x + 2m2 + m 1 = 0 (1) Có = [ (3m + 1)]2 4.1.( 2m2 + m 1) = m2 + 2m + 5 = (m + 1)2 + 4 > 0 m Vậy phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m. b/ Gọi x1, x2 là các nghiệm của phương trình (1). Ta có x1 + x2 = 3m + 1; x1x2 = 2m2 + m 1 B = x12 + x22 3x1x2 = (x1 + x2)2 5x1x2 = (3m + 1)2 5(2m2 + m 1) = (m2 m 6) 1 2 13 13 1 1 B = (m ) + . Dầu “=” xảy ra m = 0 m = . 2 2 2 2 2 13 1 Vậy Bmin = khi m = 2 2 Bài 3: Gọi x (giờ) là thời gian người thứ I một mình làm xong cả công việc. 20 và y (giờ) là thời gian người thứ II một mình làm xong cả công việc. (Với x, y > ) 7 1 1 7 1 1 7 x y 20 (1) Ta có hệ phương trình: x y 20 y x 3 y x 6 (2) 2 2 1 1 7 30 Từ (1) và (2) ta có phương trình: . Giải phương trình được x1 = 4, x2 = x x 6 20 7 Chọn x = 4. Vậy thời gian một mình làm xong cả công việc của người thứ I là 4 giờ, của người thứ II là 10 giờ. Bài 4: a/ C/minh AOD = APD = 900 D O và P cùng nhìn đoạn AD dưới một góc 900 OADP tứ giác nội tiếp đường tròn đường kính AD OC AC I b/ C/ minh AOC DOB (g.g) OB DB M OB.AC = OC.BD (đpcm) P c/ Ta có IPC = PBA (cùng chắn cung AP của (O)) C và có ICP = PBA (cùng bù với OCP) Suy ra IPC = ICP IPC cân tại I. Để IPC là tam giác đều thì IPC = 600 PBA = 600 A B O OP = PB = OB = R số đo cung PB bằng 600 C/minh DIP cân tại I ID = IP = IC = CD:2 1 1 1 1 R 3 R2 3 Do đó SPIC = SDPC = . .CP.PD = . .R = (đvdt) 2 2 2 4 3 12 Bài 5:
- 2 1 2 1 1 2 1 2 1 Ta có: x = = = 2 2 1 2 2 1. 2 1 2 3 2 2 3 5 2 7 4 2 2 17 12 2 5 29 2 41 x2 = ; x = x.x2 = ; x (x ) = ; x = x.x4 = 4 8 16 32 29 2 41 34 24 2 25 2 35 20 2 20 16 Do đó: 4x5 + 4x4 5x3 + 5x 2 = 1 8 Vậy A = (4x5 + 4x4 5x3 + 5x 2)2014 + 2015 = ( 1)2014 + 2015 = 1 + 2015 = 2016
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thừa Thiên Huế
5 p | 6 | 2
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Quảng Ninh
1 p | 4 | 2
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Ninh Bình
1 p | 4 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Hòa Bình
1 p | 6 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Bình Định
1 p | 10 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Bình Phước
1 p | 4 | 1
-
Tuyển chọn đề thi tuyển sinh vào lớp 10 Chuyên Toán năm 2024-2025
68 p | 8 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Tây Ninh
5 p | 2 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Sơn La
1 p | 3 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Tuyên Quang
1 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thanh Hóa
5 p | 12 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
7 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Quảng Nam
15 p | 10 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Kon Tum
1 p | 3 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Quảng Bình
1 p | 8 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Hưng Yên
6 p | 5 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nghệ An
8 p | 12 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
13 p | 8 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn