Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A 2010_THPT Lê Văn Hưu Thanh Hóa
lượt xem 34
download
Tham khảo tài liệu 'đề thi và đáp án kỳ thi thử đh môn toán khối a 2010_thpt lê văn hưu thanh hóa', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A 2010_THPT Lê Văn Hưu Thanh Hóa
- Sở GD & ĐT Thanh Hoá KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 Trường THPT Lê Văn Hưu MÔN TOÁN KHỐI A Tháng 03/2010 ĐỀ CHÍNH THỨC Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) Câu I. (2.0 điểm) Cho hàm số y = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Câu II. (2.0 điểm) 1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x∈ [ 0 ; π ]. 33 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 2. Giải hệ phương trình x − y = y + ( 2 y − x )( 2 y + x ) 2 Câu III. (1.0 điểm) 1 4 x ∫ (x e + 2 x3 Tính tích phân )dx 0 1+ x Câu IV. (1.0 điểm) Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx ≥ 2xyz Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 điểm) Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c. Tính thể tích của tứ diện ABCD. PHẦN RIÊNG ( 3.0 điểm) Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không được chấm điểm). A. Theo chương trình nâng cao Câu VIa. (2.0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N. Câu VIIa. (1.0 điểm) log 3 ( x + 1) 2 − log 4 ( x + 1)3 Giải bất phương trình >0 x2 − 5x − 6 B. Theo chương trình chuẩn Câu VIb. (2.0 điểm) 1. Cho elip (E) : 4x2 + 16y2 = 64.Gọi F1, F2 là hai tiêu điểm. M là điểm bất kì trên (E).Chứng tỏ rằng 8 tỉ số khoảng cách từ M tới tiêu điểm F2 và tới đường thẳng x = có giá trị không đổi. 3 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q): x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q). Câu VIIb. (1.0 điểm) 1 2 6 3 Giải bất phương trình A2 x − Ax ≤ Cx + 10 ( Cn , An là tổ hợp, chỉnh hợp chập k của n phần tử) 2 k k 2 x .................HẾT..............
- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh .......................................................... số báo danh.................................................. Sở GD & ĐT Thanh Hoá ĐÁP ÁN KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 Trường THPT Lê Văn Hưu MÔN TOÁN Tháng 03/2010 ĐỀ CHÍNH THỨC Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) CÂU NỘI DUNG THANG ĐIỂM Câu I 0.25 (2.0đ) TXĐ : D = R\{1} 1. Chiều biến thiên 0.25 (1.0đ) lim f ( x) = lim f ( x) = 1 nên y = 1 là tiệm cận ngang của đồ thị hàm số x →+∞ x →−∞ lim f ( x) = +∞, lim = −∞ nên x = 1 là tiệm cận đứng của đồ thị hàm số x →1+ − x →1 1 y’ = − 0) ta có f’(t) = 1+ t4 (1 + t 4 ) 1 + t 4
- f’(t) = 0 khi t = 1 0.25 Bảng biến thiên x 0 1 +∞ từ bảng biến thiên ta c f'(t) ) + 0 - d(I ;tt) lớn nhất khi và chỉ khi t = 1 hay f(t) ) 2 x0 = 2 x0 − 1 = 1 ⇔ x0 = 0 + Với x0 = 0 ta có tiếp tuyến là y = -x 0.25 + Với x0 = 2 ta có tiếp tuyến là y = -x+4 Câu 0.25 II(2.0đ) Phương trình đã cho tương đương với 1. 2(cos4x + cos2x) = (cos2x + 1) + sin2x (1.0đ) cosx=0 0.25 ⇔ 4cos3xcosx=2 3cos 2 x + 2s inxcosx ⇔ 2cos3x= 3cosx+sinx π 0.25 + cosx=0 ⇔ x= + kπ 2 π π 3x=x- 6 + k 2π + 2cos3x= 3cosx+sinx ⇔ cos3x=cos(x- ) ⇔ 6 3x = π − x + k 2π 6 0.25 π x = − 12 + kπ π 11π π 13π ⇔ vì x ∈ [ 0; π ] ⇒ x = , x = ,x = ,x = x = π + kπ 2 12 24 24 24 2 2. x, y ≥ 0 0.25 (1.0đ) ĐK: x ≥ y Hệ phương trình 3 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 3 33 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 ⇔ ⇔ x − y − y = (2 y − x)( 2 y + x ) x − 2 y = (2 y − x)( 2 y + x )( x − y + y ) 33 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 33 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 0.25 ⇔ ⇔ (2 y − x )[( 2 y + x )( x − y + y ) + 1] = 0 2 y − x = 0 (do 2 y + x )( x − y + y ) + 1 ≠ 0 ) 33 x − 2 y − 5.6 x + 4.23 x − 2 y = 0 32 x − 5.6 x + 4.2 2 x = 0 (1) ⇔ ⇔ 2 y = x 2 y = x (2)
- 3 x 3 2x 3 x ( 2 ) = 1 x = 0 Giải (1): 3 − 5.6 + 4.2 = 0 ⇔ ( ) − 5.( ) + 4 = 0 ⇔ 2x x 2x ⇔ x = log 4 2 2 ( 3 ) x = 4 3 2 0.25 2 Với x 0 thay vao (2) ta được y = 0 0.25 1 Với x = log 3 4 thay vao (2) ta được y = log 3 4 2 2 2 1 Kết hợp với điều kiện ta được nghiệm của phương trình là x = log 3 4 ,y = log 3 4 2 2 2 Câu III. 1 4 x 1 1 4 x 0.25 Đặ t I = ∫ ( x e + )dx . Ta có I = ∫ x 2 e x dx + ∫ 2 x3 3 (1.0đ) dx 0 1+ x 0 0 1+ x 1 1 1 t 1 t 1 1 0.25 Ta tính I1 = ∫ x e dx Đặt t = x3 ta có I1 = ∫ e dt = 3 e 3 1 2 x 0 = e− 0 30 3 3 1 4 x 0.25 Ta tính I 2 = ∫ dx Đặt t = 4 x ⇒ x = t ⇒ dx = 4t dt 4 3 0 1+ x t4 1 1 1 2 π 0.25 Khi đó I 2 = 4 ∫ dx = 4 ∫ (t 2 − 1 + )dt = 4(− + ) 0 1+ t 2 0 1+ t 2 3 4 1 Vậy I = I1+ I2 = e + π − 3 3 1 1 1 0.25 Câu IV. Ta có xy + yz + xz ≥ 2 xyz ⇔ x + y + z ≥ 2 nên (1.0đ) 0.25 1 1 1 y −1 z −1 ( y − 1)( z − 1) ≥ 1− +1− = + ≥2 (1) x y z y z yz 1 1 1 x −1 z −1 ( x − 1)( z − 1) Tương tự ta có ≥ 1− +1− = + ≥2 (2) y x z x z xz 1 1 1 x −1 y −1 ( x − 1)( y − 1) ≥ 1− +1− = + ≥2 (3) y x y x y xy 1 0.25 Nhân vế với vế của (1), (2), (3) ta được ( x − 1)( y − 1)( z − 1) ≤ 8 1 3 0.25 vậy Amax = ⇔x= y=z= 8 2
- Câu V. Qua B, C, D lần lượt dựng các đường thẳng P 1.0 (1.0đ) Song song với CD, BD, BC cắt nhau tại M, N, P Ta có MN = 2BD, MP = 2CD, NP = 2BC từ đó ta có các tam giác AMN, APM, ANP vuông tại A Đặt x = AM, y = AN, AP = z ta có D B x = 2(a 2 + c 2 − b 2 ), y = 2(b 2 + c 2 − a 2 ) z = 2( a 2 + b 2 − c 2 ) A 1 Vậy V = 12 M C N 2(a 2 + c 2 − b 2 )(b 2 + c 2 − a 2 )(a 2 + b 2 − c 2 ) Câu Gọi A là giao điểm d1 và d2 ta có A(3 ;0) 0.5 VIa. Gọi B là giao điểm d1 với trục Oy ta có B(0 ; - 4) (2.0đ) Gọi C là giao điểm d2 với Oy ta có C(0 ;4) 1. Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có 0.5 (1.0đ) I(4/3 ; 0), R = 4/3 2. 1.0 (1.0đ) Chọn hệ trục toạ độ như hình vẽ Y Ta có M(1 ;0 ;0), N(0 ;1 ;1) D' ' A' ' B(2 ;0 ;2), C’(0 ;2 ;2) Gọi phương tình mặt cầu đi qua 4 điểm M,N,B,C’ có dạng C' ' B' ' x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 Vì mặt cầu đi qua 4 điểm nên ta có 5 N A = − 2 1 + 2 A + D = 0 2 + 2 B + 2C + D = 0 5 M M B = − D A X ⇔ 2 8 + 4 A + 4C + D = 0 1 8 + 4 B + 4C + D = 0 C = − 2 C B D = 4 Z Vậy bán kính R = A2 + B 2 + C 2 − D = 15 Câu Đk: x > - 1 0.25 VIIa (1.0đ) 3log 3 ( x + 1) 0.25 2 log 3 ( x + 1) − bất phương trình log 3 4 ⇔ >0 ( x + 1)( x − 6) log 3 ( x + 1) 0.25 ⇔
- uuu r uu r uuu uu r r 2. Ta có AB(1;1;1), nQ (1; 2;3), AB; nQ = (1; −2;1) 1.0 (1.0đ) uuu uu r r r uuu uu r r Vì AB; nQ ≠ 0 nên mặt phẳng (P) nhận AB; nQ làm véc tơ pháp tuyến Vậy (P) có phương trình x - 2y + z - 2 = 0 Câu nghiệm bất phương trình là x = 3 và x = 4 1.0 VIIb (1.0đ) Chó ý: NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®îc ®ñ ®iÓm tõng phÇn nh ®¸p ¸n quy ®Þnh
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ THI VÀ ĐÁP ÁN TOÁN KHỐI B ĐH - CĐ 2011
4 p | 1483 | 171
-
Đề thi và đáp án gợi ý môn Lý hệ Cao Đẳng năm 2009
7 p | 4457 | 167
-
Đề thi và Đáp án gợi ý môn Sinh Hệ Cao Đẳng năm 2009
8 p | 1830 | 164
-
Đề thi và đáp án tuyển sinh Đại Học - Cao Đẳng năm 2011 Toán Khối D
4 p | 531 | 156
-
Đề thi và đáp án gợi ý môn Văn khối C,D hệ Cao Đẳng
4 p | 2977 | 136
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối B-D 2010_THPT Lê Văn Hưu Thanh Hóa
5 p | 171 | 66
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A-B (2009-2010)_THPT Nguyễn Trung Thiên Hà Tĩnh
5 p | 232 | 63
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A-B năm 2010
5 p | 293 | 60
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A (2009-2010)_Đặng Thúc Hứa Nghệ An
6 p | 155 | 56
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán 2010_THPT Thanh Chương I Nghệ An
6 p | 173 | 51
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A năm 2010_THPT Minh Châu Hưng Yên
9 p | 147 | 49
-
Đề thi và đáp án kỳ thi thử ĐH lần 2 môn Toán khối A-B-V (2009-2010)_THPT Chuyên Lê Quý Đôn Bình Định
3 p | 258 | 45
-
Đề thi và đáp án Nghề phổ thông môn Kĩ thuật làm vườn (phần lý thuyết) - Sở GD & ĐT Tỉnh Đắc Nông (2010-2011)
7 p | 1157 | 41
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A-B 2010_Đề thi lần 1 BGD
5 p | 128 | 40
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán khối A-B (2009-2010)_THPT Cao Lãnh Đồng Tháp
5 p | 148 | 30
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán _Vĩnh Phúc
6 p | 118 | 26
-
Đề thi và đáp án kỳ thi thử ĐH môn Toán năm 2008_THPT Đặng Thúc Hứa
8 p | 117 | 20
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn