Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p6
lượt xem 5
download
Tham khảo tài liệu 'giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p6
- a, b, Hình 3.6 đặc tính quá độ của hàm truyền Ngoài ra còn có các mô hình Lag, và mô hình dao động bậc hai tắt dần. Dạng hàm truyền của nó như sau: - Mô hình Lag: K dt (1 + Tt s) W(s) = (Tt < Tm) 1 + Tms - Mô hình dao động bậc hai tắt dần: kq 2 W(s) = (0
- điều khiển sao cho độ sai lệch giảm tới 0. Luật điều khiển tích phân còn gọi là điều khiển chậm sau. - Điều khiển vi phân (D): Khi hằng số thời gian hoặc thời gian chết của hệ thống rất lớn điều khiển theo P hoặc PI có đáp ứng quá chậm thì ta sử dụng kết hợp với điều khiển vi phân. Điều khiển vi phân tạo ra tín hiệu điều khiển sao cho tỷ lệ với tốc độ thay đổi sai lệch đầu vào. Luật điều khiển vi phân còn được gọi là điều khiển vượt trước. Mô hình liên tục của bộ điều khiển PID được mô tả như sau: t 1 de(t) u(t) = k p [e(t) + ∫ e(τ)dτ + TD ] (3.9) TI 0 dt Ở đây e(t) là sai lệch đầu vào; kp là hệ số khuếch đại; TI là hằng số tích phân; TD là hằng số vi phân. Ở trong hệ gián đoạn, đầu vào e(t) được thay bằng dãy {ek} có chu kỳ trích mẫu là TS, khi đó thuật toán PID số được xây dựng như sau: Thành phần khuếch đại uPt) = kpe(t) được thay bằng ukP= kpek t kp ∫ e(τ)dτ được xấp xỉ bằng Thành phần tích phân uI(t) = TI 0 k p TS k ∑e I uk = i TI i=1 52
- de(t) Thành phần vi phân uD(t) = k p TD được thay bằng dt k p TD (ek - ek-1 ) uk D = TS Thay các công thức xấp xỉ trên vào uk = ukP + ukI + ukD ta thu được mô hình không liên tục của bộ PID số ⎡ ⎤ TS k T u k = k p ⎢e k + ∑ ei + D (e k - e k-1 ) ⎥ (3.10) TI i=1 TS ⎣ ⎦ Với thuật toán PID này, ta có thể tạo ra được các thuật toán điều khiển khác như: P, PI, PID. Nhưng vấn đề quan trọng là ta phải xác định được các tham số kp, TI, TD. Xác định tham số cho bộ điều chỉnh Khi ta đã xây dựng được hàm truyền của hệ thống, để hệ làm việc ổn định ta phải tổng hợp các bộ điều chỉnh tương ứng. Trong mô hình chúng tôi đã sử dụng bộ điều chỉnh PID kinh điển. Khi đó chất lượng của hệ thống phụ thuộc vào các tham số kp, TI, TD của PID. Hiện có khá nhiều phương pháp xác định các tham số trên, song tiện ích hơn cả là các phương pháp sau: Phương pháp sử dụng mô hình xấp xỉ bậc nhất có trễ của đối tượng (phương pháp thứ nhất của Ziegler – Nichols), phương pháp hàm chuẩn tối ưu và phương pháp xác định tham số theo tổng hằng số thời gian theo Kuhn. Tuỳ theo từng ứng dụng và đáp ứng quá độ của từng đối tượng chúng ta sẽ lựa chọn một trong số các phương pháp trên. 53
- Phương pháp thứ nhất của Ziegler – Nichols Phương pháp này chỉ áp dụng cho đối tượng có đáp ứng quá độ có dạng bậc nhất có trễ. Từ hàm truyền của đối tượng ta dựng đáp ứng quá độ cho đối tượng này. Theo phương pháp này ta phải xác định ba thông số: L (hằng số thời gian trễ), k (hệ số khuyếch đại) và T (hằng số thời gian quán tính). Hình 3.7 Đặc tính quá độ của đối tượng L là khoảng thời gian đầu ra h(t) chưa có phản ứng ngay với kích thích 1(t) tại đầu vào. k = h(∞) Gọi A là điểm kết thúc khoảng thời gian trễ, tức là điểm trên trục hoành có hoành độ bằng L. Khi đó T là khoảng thời gian cần thiết sau L để tiếp tuyến của h(t) tại A đạt được giá trị k. Sau khi xác định được ba thông số trên Ziegler – Nichols đã nêu các biểu thức xác định các tham số kp, TI, TD như sau: - Nếu sử dụng bộ điều chỉnh là bộ khuyếch đại P có hàm truyền là kp thì T kp = chọn kL 54
- ⎛ 1⎞ 0,9T k p ⎜1+ ⎟ thì chọn k p = - Nếu sử dụng bộ PI có hàm truyền và ⎝ TIs ⎠ kL 10 TI = L 3 ⎛ ⎞ 1 - Nếu sử dụng bộ PID có hàm truyền k p ⎜ 1+ + TDs ⎟ thì chọn ⎝ TIs ⎠ L 1, 2T , TI = 2.L, TD = kp = 2 kL Phương pháp hàm chuẩn tối ưu (tiêu chuẩn môđul tối ưu và tiêu chuẩn tối ưu đối xứng). Ta giả thiết rằng các mạch điều chỉnh của mỗi đại lượng có chứa một phần có các hằng số thời gian lớn (hằng số thời gian điện cơ, hằng số thời gian của cuộn dây kích từ…), và một phần có chứa các hằng số thời gian nhỏ (hằng số thời gian của các xen xơ, của mạch điều khiển transitor…). Đó là các thời gian thuần trễ bé hay thời gian trễ từ các bộ lọc. Hằng số thời gian bé chung được tính theo: ⎛ ⎞ n 1+ s.Tb1 )(1+ s.Tb2 ) ... (1+ s.Tbn ) = ⎜1+ s∑ TbK ⎟ ( (3.11) ⎝ ⎠ K=1 n Tb = ∑ TbK với K =1 và hàm truyền tương ứng với một khâu quán tính có hằng số thời gian bằng tổng các thời gian trễ cộng lại. Nguyên tắc chung là bù đủ các hằng số thời gian lớn trong mạch hở và chỉ còn lại hằng số thời gian bé và chất lượng của hệ được xác định bởi chính một hằng số thời gian bé này. Do vậy, khi hệ có một hằng số thời gian lớn, chọn bộ điều chỉnh PI, Khi hệ có hai hằng số thời gian lớn, chọn bộ điều chỉnh 55
- PID. Trong trường hợp số lượng các hằng số thời gian lớn lớn hơn hai, dùng phương pháp nối tiếp các bộ điều chỉnh hay kết hợp với các phương pháp khác. Hình 3.8 Sơ đồ cấu trúc hệ thống điều khiển Nếu đối tượng có hàm truyền: ns k 1 ∏ (1+ sT ) W0 (s) = (1+ sTb ) K=1 K Thì bộ điều chỉnh được chọn có dạng: 1 nc ∏ (1+ sTcK ) R(s) = sTI K=1 Thông số của bộ điều chỉnh được chọn theo điều kiện: ns = n c và TcK = TK Sau khi đã bù đủ, hệ hở có dạng: k Wh (s) = sTI (1+ sTb ) Hệ kín có hàm truyền: 1 1 Wk (s) = = (3.12) sT (1+ sTb ) 1 1+ 1+ I Wh (s) k Khâu tích phân ở bộ điều chỉnh có chức năng triệt tiêu sai lệch tĩnh, và ở (3.12) chỉ cần xác địnhhằng số tích phân TI. 56
- Bình phương môđul đặc tính tần hệ kín được xác định bởi: 1 Wk 2 (jω) = Wk (jω)Wk (-jω) = (3.13) TI ⎛ TI ⎞2 1+ ⎜ - 2Tb ⎟ ω + ... k⎝k ⎠ Điều kiện để hệ tối ưu còn là môđul của đặc tính tần hệ kín với tần số bé là một hằng: Wk (jω) ≈ 1 (3.14) nghĩa là khi ω → 0, môđul đặc tính tần hệ hở Wk (jω) → ∞ , do đó trong hệ phải có khâu tích phân. Với tần số cao, điều kiện (3.14) không thể thoả mãn được, khi ω → ∞ thì Wk (jω) → 0 . Do đó tần số cắt càng lớn càng tốt. Từ điều kiện (3.14), nếu không quan tâm đến thành phần bậc cao của ω thì ở mẫu số của (3.13) thành phần thứ hai phải bằng 0, nghĩa là: TI = 2Tb hay TI = 2k.Tb k Hàm truyền của hệ kín sau khi đã chọn bộ điều chỉnh có dạng: 1 Wk * (s) = 1+ s2Tb + s 2 2Tb2 Lưu ý rằng Tb là tổng của các thời gian trễ bé trong hệ, do đó không thể bù hằng số thời gian bé, vì đặc tính pha của khâu quán tính tương đương sẽ không tương đương với đặc tính pha của một khâu quán tính. Mặt khác, khi không có điều kiện bù đủ, mà cộng các hằng số thời gian bé còn lại vào Tb thì độ tác động nhanh của hệ sẽ giảm rõ rệt và không còn là tối ưu. Phương pháp hàm tối ưu được tổng kết như ở Bảng 3.1. 57
- ns Bộ điều chỉnh Tm Tv TI 1 T1 -- 2kTb sTn +1 PI; sTI ( sTn +1) ( sTv +1) 2 T1 T2 2kTb PID; sTI Bảng 3.1 Kết luận chương 3 Như vậy chương 3 đã nêu được các nguyên lý của cảm biến đo tốc độ và đã chế tạo được mạch cảm biến đo tốc độ theo nguyên lý đếm xung. Ngoài ra chương này còn nêu cách xây dựng hàm truyền của đối tượng 58
- Chương 4 XÂY DỰNG THUẬT TOÁN VÀ CHƯƠNG TRÌNH ĐIỀU KHIỂN BẰNG VI XỬ LÝ 8051 4.1 Giới thiệu về vi xử lý 8051 4.1.1 Giới thiệu về vi điều khiển Bộ vi điều khiển viết tắt là Micro-controller, là mạch tích hợp trên một chip có thể lập trình được, dùng để điều khiển hoạt động của một hệ thống. Theo các tập lệnh của người lập trình, bộ vi điều khiển tiến hành đọc, lưu trữ thông tin, xử lý thông tin, đo thời gian và tiến hành đóng mở một cơ cấu nào đó. Trong các thiết bị điện và điện tử dân dụng, các bộ vi điều khiển điều khiển hoạt động của TV, máy giặt, đầu đọc laser, điện thoại, lò vi-ba… Trong hệ thống sản xuất tự động, bộ vi điều khiển được sử dụng trong Robot, dây truyền tự động. Các hệ thống càng “thông minh” thì vai trò của hệ vi điều khiển càng quan trọng. 4.1.2 Lịch sử phát triển của các bộ vi điều khiển Bộ vi điều khiển thực ra là một loại vi xử lý trong tập hợp các bộ vi xử lý nói chung. Bộ vi điều khiển được phát triển từ bộ vi xử lý, từ những năm 70 do sự phát triển và hoàn thiện về công nghệ vi điện tử dựa trên kỹ thuật MOS (Metal-Oxide-Semiconductor), mức độ tích hợp của các linh kiện bán dẫn trong một chip ngày càng cao. Năm 1971 xuất hiện bộ vi xử lý 4 bit loại TMS1000 do công ty Texas Instruments vừa là nơi phát minh vừa là nơi sản xuất. Nhìn tổng thể thì bộ vi xử lý chỉ có chứa trên một chip những chức năng cần thiết để xử lí chương trình theo một trình tự, còn tất cả bộ phận phụ trợ khác cần thiết như: Bộ nhớ dữ liệu, bộ nhớ chương trình, bộ chuyển đổi AID, khối điều khiển, khối hiển 59
- thị, điều khiển máy in, khối đồng hồ và lịch là những linh kiện nằm ở bên ngoài được nối vào bộ vi xử lý. Mãi đến năm 1976 công ty INTEL (Intelligen-Elictronics) mới cho ra đời bộ vi điều khiển đơn chip đầu tiên trên thế giới với tên gọi 8048. Bên cạch bộ xử lí trung tâm 8048 còn chứa bộ nhớ dữ liệu, bộ nhớ chương trình, bộ đếm và phát thời gian các cổng vào và ra Digital trên một chip. Các công ty khác cũng lần lượt cho ra đời các bộ vi điều khiển 8 bit tương tự như 8048 và hình thành họ vi điều khiển MCS-48 (Microcontroller- Sustem-48). Đến năm 1980 công ty INTEL cho ra đời thế hệ thứ hai của bộ vi điều khiển đơn chip với tên gọi 8051. Và sau đó hàng loạt các vi điều khiển cùng loại với 8051 ra đời và hình thành họ vi điều khiển MCS-51. Đến nay họ vi điều khiển 8 bit MCS-51 đã có đến 250 thành viên và hầu hết các công ty hàng đầu thế giới chế tạo. Đứng đầu là công ty INTEL và rất nhiều công ty khác như: AMD, SIEMENS, PHILIPS, DALLAS, OKI … Ngoài ra còn có các công ty khác cũng có những họ vi điều khiển riêng như: Họ 68HCOS Của công ty Motorola Họ ST62 Của công ty SGS-THOMSON Họ H8 Của công ty Hitachi Họ PIC Của công ty Microchip 4.1.3 Khảo sát bộ vi điều khiển 8051 IC vi điều khiển 8051 thuộc họ MCS-51 có các đặc điểm sau: - 4 Kbyte ROM (được lập trình bởi nhà sản xuất chỉ có ở 8051) - 128 Byte RAM - 4 Port I10 8 bit - Hai bộ định thời 16 bit - Giao tiếp nối tiếp - 64 KB không gian bộ nhớ chương trình mở rộng 60
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình công nghệ chế tạo máy part 1 - Phạm Ngọc Dũng, Nguyễn Quang Hưng
0 p | 689 | 272
-
Giáo trình hình thành sơ đồ nguyên lý hệ thống lạnh máy nén Bitzer 2 cấp với thông số kỹ thuật p6
5 p | 276 | 37
-
Giáo trình Công nghệ chế tạo máy I - Lưu Đức Bình
197 p | 154 | 33
-
Giáo trình hình thành sơ đồ nguyên lý hệ thống lạnh máy nén Bitzer 2 cấp với thông số kỹ thuật p2
5 p | 90 | 8
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p5
10 p | 79 | 7
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p7
10 p | 65 | 5
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p2
10 p | 61 | 5
-
Giáo trình hình thành quy trình biến đổi hệ số bám dọc trên đường biểu đồ tốc độ xe chạy p3
10 p | 60 | 4
-
Giáo trình hình thành ứng dụng điều phối cơ bản về đo lường cấp nhiệt thu hồi trong định lượng p1
10 p | 62 | 4
-
Giáo trình hình thành quy trình biến đổi hệ số bám dọc trên đường biểu đồ tốc độ xe chạy p5
10 p | 70 | 4
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p9
10 p | 66 | 4
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p10
2 p | 82 | 4
-
Giáo trình hình thành quy trình biến đổi hệ số bám dọc trên đường biểu đồ tốc độ xe chạy p2
10 p | 65 | 4
-
Giáo trình hình thành quy trình biến đổi hệ số bám dọc trên đường biểu đồ tốc độ xe chạy p4
10 p | 62 | 4
-
Giáo trình Công nghệ chế tạo máy (Nghề: Cắt gọt kim loại - Cao đẳng): Phần 2 - Trường CĐ nghề Việt Nam - Hàn Quốc thành phố Hà Nội
96 p | 24 | 3
-
Giáo trình hình thành chế độ ứng dụng điểu khiển tốc độ trong động cơ không đồng bộ p4
10 p | 75 | 3
-
Giáo trình Dung sai và đo lường kỹ thuật (Nghề: Cơ điện tử - Cao đẳng): Phần 1 - Trường CĐ nghề Việt Nam - Hàn Quốc thành phố Hà Nội
82 p | 24 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn