Giáo trình - Lý sinh học - chương 5
lượt xem 64
download
86 Chương 5 ĐIỆN SINH HỌC I. Mở đầu: Từ lâu ở châu Âu, người ta đã tiến hành những thí nghiệm lý thú để khám phá về các khả năng làm xuất hiện dòng điện trên cơ thể động vật. Từ đó khái niệm về điện động vật mới xuất hiện và đã được chứng minh sự tồn tại của nó. Một số loài cá sinh sống ở sông và biển có bộ phận bảo vệ đặc biệt để phát điện như cá trê điện, cá đuối điện, chình điện...Ngược dòng lịch sử về sự phát hiện ra các dòng điện từ sinh...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình - Lý sinh học - chương 5
- 86 Chương 5 ĐIỆN SINH HỌC I. Mở đầu: Từ lâu ở châu Âu, người ta đã tiến hành những thí nghiệm lý thú để khám phá về các khả năng làm xuất hiện dòng điện trên cơ thể động vật. Từ đó khái niệm về điện động vật mới xuất hiện và đã được chứng minh sự tồn tại của nó. Một số loài cá sinh sống ở sông và biển có bộ phận bảo vệ đặc biệt để phát điện như cá trê điện, cá đuối điện, chình điện...Ngược dòng lịch sử về sự phát hiện ra các dòng điện từ sinh vật trên cho thấy, từ rất lâu người Ai Cập đã gặp phải và làm quen với những hiện tượng điện này. Một tính chất đặc trưng của tế bào động vật là giữa chúng và môi trường bên ngoài luôn luôn tồn tại một sự chênh lệch điện thế. Đo hiệu điện thế trên các loại tế bào khác nhau thì sự chênh lệch này vào khoảng 0,1 V. Đặc biệt có một số loài cá điện có thể sinh ra các xung điện rất cao đến khoảng 600V, với dòng điện cở hàng trăm mA. Tính chất điện sinh học đã được Dr. Louis De Galvanie khám phá. Sau đó, đề tài này đã thu hút nhiều nhà khoa học khác quan tâm và đầu tư vào việc nghiên cứu một cách lý thú. Tuy nhiên sau hơn 100 năm, kể từ những phát hiện đầu tiên dưới sự ghi nhận của các nhà khoa học, con người vẫn chưa giải thích được cơ chế hình thành hiện tượng điện sinh vật một cách rõ ràng. Các kết quả thực nghiệm vẫn còn đóng khung trong việc mô tả hiện tượng. Trong vài thập kỉ gần đây, nhờ các phương tiện ghi đo có độ nhạy cao, chính xác, cũng như các thiết bị điện tử hiện đại...người ta mới khám phá được nhiều qui luật hình thành dòng điện của tế bào. Từ kết quả thực nghiệm đo được bằng các phương pháp khác nhau như đồng vị phóng xạ, động học phân tử, hiển vi điện tử, hoá tế bào..., các nhà khoa học đã cho thấy bản chất của dòng điện sinh học. Việc xây dựng cơ sở lý thuyết và giải thích cơ chế của việc hình thành dòng điện sinh học còn có nhiều hạn chế. Sỡ dĩ như vậy là vì khi nghiên cứu hiện tượng điện sinh vật thường gặp phải một số giới hạn sau: - Tốc độ biến đổi tín hiệu trên đối tượng nghiên cứu thay đổi quá nhanh, trong khi các giá trị đo được thường rất nhỏ, nên yêu cầu về thiết bị nghiên cứu phải là các dụng cụ ghi đo thật nhạy và có độ chính xác thật cao.
- 87 - Đối tượng nghiên cứu thường có kích thước hết sức nhỏ (vào cở kích thước tế bào). - Điều kiện nghiên cứu, phải được tiến hành với phương pháp như thế nào để không làm ảnh hưởng đến trạng thái sinh lý của đối tượng khảo sát. Trước khi tìm hiểu về các loại điện thế sinh vật, ta lưu ý rằng các dịch thể ở hai phía trong và ngoài màng tế bào là các dung dịch điện phân (electrolytic solutions). Nồng độ trung bình của các anion có giá trị khoảng 155 mEq/l, đông thời có xuất hiện một nồng độ tương ứng của các loại cation phát triển theo phía ngược lại. Theo cơ chế vận chuyển vật chất qua màng sinh học ta thấy có sự phân bố trở lại của các anion và cation ở hai phía màng. Đồng thời với quá trình vận chuyển tích cực, thì có cả sự khuyếch tán của các ion với các độ thấm khác nhau. Kết quả cuối cùng là trong toàn bộ quá trình hệ có sự chênh lệch nồng độ ion ở hai phía màng, do đó làm xuất hiện một hiệu số điện thế màng (membranne potential). Hai yếu tố cơ bản có liên quan đến sự hình thành hiệu thế màng sinh học có ý nghĩa quyết định đó là: - Sự khuyếch tán những ion qua màng do sự chênh lệch nồng độ của các loại ion ở hai phía màng. - Sự vận chuyển tích cực của những ion qua màng khi chuyển dịch từ pha (phase) này sang pha khác, tạo thành một cân bằng mới đó là sự cân bằng đặc biệt của các ion. Với một số đặc điểm nêu trên thì mục đích và yêu cầu khi nghiên cứu hiện tượng điện sinh vật đó là: Hiểu được bản chất của các loại điện thế sinh vật cơ bản như loại điện thế nghỉ, điện thế tổn thương, điện thế hoạt động...Ngoài ra cần nắm vững về cách ghi đo, điều kiện thí nghiệm, các giai đoạn xuất hiện. Xây dựng lý thuyết phù hợp để giải thích sự hình thành các loại điện thế trên. Giải thích về các kết quả ghi nhận được, kể cả các mối quan hệ giữa chúng. Tìm hiểu một số ứng dụng điện sinh học của các công trình nghiên cứu trong Y-Sinh học. Đưa ra một số ứng dụng hiện tượng điện trong công tác chẩn đoán, thăm dò chức năng, cũng như các ứng dụng để điều trị bệnh trong Y học. Việc nghiên cứu các hiện tượng điện sinh vật và kỹ thuật ghi đo các thông số liên quan có một ý nghĩa hết sức quan trọng. Đặc biệt, ngày nay với các thiết bị khoa học hiện đại, việc ứng dụng hiện tượng điện
- 88 trong Y học, xét nghiệm trên cận lâm sàng được sử dụng khá phổ biến. Do đó ta cần phải nắm kỷ phương pháp ghi đo, hiểu rõ bản chất của các loại điện thế sinh vật cơ bản. II. Điện thế màng và điện thế pha. 1. Điện thế pha. * Gradient điện thế (the electric gradient) Ở trạng thái bình thường ta thấy có sự phân bố không đều của các ion ở hai phía của màng sinh vật. Do có sự chênh lệch nồng độ, các ion này sẽ khuyếch tán qua màng từ nơi có nồng độ cao đến nơi có nồng độ thấp hơn. Dưới ảnh hưởng của gradien nồng độ, các ion có khuynh hướng tiến tới trạng thái cân bằng mới, đồng thời hình thành giữa nó một lớp điện tích kép ngay ở trong dịch sinh vật. Ảnh hưởng của điện trường ngoài sẽ làm xuất hiện gradien điện thế do sự phân cực của màng. Các ion dương có xu hướng rời môi trường cũ để đến phía âm, ngược lại ion âm dịch chuyển về môi trường có thế dương hơn. Sự chuyển dời của các hạt mang điện sẽ dừng lại khi lực tác dụng lên các ion dưới ảnh hưởng của gradien điện thế cân bằng với gradien nồng độ. Trong đó gradien nồng độ đã phát triển theo hướng ngược lại so với gradien điện thế như (hình 5.1) dưới đây: Hình 5.1: Ảnh hưởng của gradien điện thế và gradien nồng độ : Dòng chuyển dịch dưới tác dụng gradient điện thế : Dòng chuyển dịch dưới tác dụng gradient nồng độ
- 89 * Điện thế điện cực (electrode) Điện thế điện cực là hiệu thế được hình thành giữa điên cực và dung dịch điện phân. Hay nói cách khác là điện thế xuất hiện ở lớp điện kép khi điện cực nhúng vào dung dịch điện phân. Ví dụ: Có thể lấy ví dụ bằng cách khảo sát trường hợp hiệu thế này khi sử dụng điện cực bạc (Ag) trong dung dịch nitrat bạc (AgNO3). Nếu gọi: μiđc là thế hoá học ion kim loại trong điện cực μidd là thế hoá học của ion trong dung dịch. Ta thấy: - Nếu μiđc < μidd , dưới ảnh hưởng của gradient thế hoá học làm các ion bạc (Ag+) chuyển dịch vào kim loại làm thanh kim loại tích điện dương. Chuyển động của các ion này dừng lại khi hệ thống ở trạng thái cân bằng điện hoá. Thanh kim loại tích điện dương và xung quanh sẽ có một lớp ion NO3- bao bọc tạo thành lớp điện kép. Ở trạng thái cân bằng điện hoá, sự chênh lệch điện thế hoá học giữa điện cực (đc) và dung dịch (dd) sẽ có giá trị bằng hiệu số điện thế điện hoá của lớp điện tích kép này. Ta được: ZFψ = μidd - μiđc (5.1) Trong đó: ψ : Điện thế của điện cực đối với dung dịch Z : Hoá trụ của các ion tự do F : Hằng số Faraday - Nếu μiđc > μidd Điện cực sẽ tích điện âm và xung quanh có lớp ion Ag+ vì các ion Ag+ sẽ rời khỏi thanh kim loại để đi vào dung dịch. Điện cực bị hoà tan dần dần trong dung dịch, hiện tượng chuyển dịch ion chỉ dừng lại khi đạt tới trạng thái cân bằng điện hoá. - Nếu μiđc = μidd Trong trường hợp này sự chuyển dịch của ion theo hai hướng là cân bằng nhau, nên thế điện cực bằng không. Dựa vào biểu thức tính công thẩm thấu phải thực hiện khi tăng nồng độ dung dịch lên 1gam/mol, nghĩa là làm thay đổi áp suất thẩm thấu ion từ P1 đến P2 để tính hiệu thế điện cực. Ta có: P A = RT ln 2 (5.2) P1
- 90 Trong đó A: là công thẩm thấu R: Hằng số khí lý tưởng. T: Nhiệt độ tuyệt đối của môi trường. Ngoài ra, công của lực điện trong quá trình chuyển hoá đã làm thay đổi nồng độ ion trong dung dịch. Công này được xác định trong trường thế năng tĩ nh điện là: A = UF (5.3) Công của quá trình điện hoá và công thẩm thấu trong mỗi quá trình cân bằng nhau, nên từ (5.2) và (5.3) ta được: P2 (5.4) = UF RT ln P1 RT P2 (5.5) U= ln F P1 Theo phương trình Vant’ Hoff thì áp suất thẩm thấu tỉ lệ thuận với nồng độ nên: RT C 2 (5.6) U= ln F C1 Trong thí nghiêm trên thì C1, C2 chính là nồng độ ion trong dung dịch (Cdd) và trong điện cực (Cđc). Với Z là hoá trị của ion kim loại, nên tổng quát ta có thể viết lại hiệu đ iện thế ion như sau: C RT (5.7) = ln âc U i ZF C dd Với Ui là hiệu điện thế xuất hiện do sự chênh lệch điện thế của các ion tạo thành. Đây chính là phương trình Nernst để xác định giá trị hiệu số điện thế điện hoá (electrochemical potential different) của các dung dịch điện ly. * Hiệu điện thế pha. Nếu nhúng hai điện cực cùng kim loại vào hai bình đựng dung dịch chứa cùng một chất điện ly với độ hoà tan C1 và C2 khác nhau. Ở mỗi điện cực, sau khi đạt đến trạng thái cân bằng sẽ xuất hiện một điện thế mà độ
- 91 lớn của nó sẽ tỷ lệ với tỷ số nồng độ các ion kim loại trong điện cực và trong dung dịch . Vì nồng độ ion kim loại trong hai dung dịch là khác nhau nên giá trị điện thế xuất hiện trên mỗi điện cực cũng khác nhau, giữa chúng tồn tại một hiệu điện thế Uc gọi là hiệu điện thế nồng độ. (5.8) U c = U c1 − U c2 (5.9) RT C âc RT C âc Uc = − ln ln ZF C1 ZF C 2 (5.10) RT C2 Uc = ln ZF C1 Với C1, C2 là các nồng độ ion kim loại trong dung dịch. Do đó, khi nghiên cứu trên thân nhiệt người bình thường, để nhanh chóng cho việc tính toán người ta thay vào các giá trị hằng định, công thức được xác định lại là: 61 C (5.11) UC = log 2 Z C1 Như trên ta thấy dưới ảnh hưởng của gradient nồng độ và gradient điện thế mà các ion khuyếch tán qua màng với tốc độ khác nhau. Nói cách khác mỗi loại ion có d? linh động khác nhau. Do sự khuyếch tán của mỗi loại ion khác nhau, nên giữa hai lớp dung dịch có nồng độ khác nhau thì lớp điện tích kép xuất hiện cũng có giá trị khác nhau. Hiệu điện thế hình thành nên do sự khyếch tán của từng loại ion, đã tạo thành các pha hoà tan trong mỗi dung dịch. Hiệu điện thế này được gọi là hiệu điện thế pha khuyếch tán (UKT) được xác định : RT ν + − ν − C 2 (5.12) U KT = ln ZF ν + + ν − C1 với ν+ , ν- là độ linh động của các ion dương và ion âm Hiệu điện thế pha (khuyếch tán) tồn tại trong một thời gian rất ngắn cho đến khi có sự phân bố đồng đều trở lại các ion âm và ion dương
- 92 trong toàn bộ thể tích dung dịch. Đối với dịch sinh vật có dạng là một hệ điện ly rất phức tạp, nên việc ứng dụng công thức này vào hệ thống sống cũng gặp phải rất nhiều khó khăn vì tồn tại nhiều đại phân tử ion hoá khác nhau. 2. Điện thế màng * Cân bằng Gibbs - Donnan Trong chương trước đã trình bày về trạng thái cân bằng Gibbs- Donnan, nên ở phần này ta chỉ nhắc đến một số tính chất có liên quan về hiện tượng điện mà thôi, đó là: -Trong cơ thể người và động vật có các protein (R+) ở dạng muối, nó là các đại phân tử không lọt được qua màng. Mặc dầu các phân tử này không qua được màng nhưng nó đã đóng một vai trò hết sức quan trọng, đó là đã làm ảnh hưởng nhiều đến tác dụng của áp suất thẩm thấu lên màng. -Do sự phân phối trở lại các ion khi trạng thái cân bằng động được hình thành, nên ở hai phía màng có sự chênh lệch nồng độ các ion (có khả năng khuyếch tán được) qua màng. - Một số ion khác còn lại mà không có khả năng chuyển dịch từ pha này đến pha kia được, thì sẽ tạo thành một sự cân bằng đặc biệt. Đó chính là cân bằng Donnan. Thực nghiệm cho thấy cân bằng Gibbs-Donnan không những phụ thuộc vào bản chất dung dịch, tính thấm chọn lọc ion, kích thước của màng mà còn phụ thuộc nhiều vào loại điện tích của các ion trong hệ sinh vật. Để hiểu rõ bản chất sự phân bố các loại ion trong cân bằng trên, ta khảo sát thí nghiệm dưới đây: Dung dịch Protein cho vào bình thứ nhất RCl, đ ược ion R+ là các proteine mang điện tích dương có kích thước lớn không qua được màng ngăn cách giữa hai bình. Bình thứ 2 chứa dung dịch muối NaCl, các ion Na+ và Cl- có thể dễ dàng qua màng. Bình thứ nhất có nồng độ C1, bình thứ hai có nồng độ C2. Ở trạng thái ban đầu các ion được phân bố trong mỗi bình như sau: [R+]1 = [Cl-]1 = C1 [Na+]2 = [Cl-]2 = C2 (5.13) Có thể biểu diễn sự phân bố các loại ion ở hai bình (1) và (2) chứa dung dịch RCl và NaCl có nồng độ ban đầu là (C1) và (C2) . Hai bình (1) và (2) ngăn cách nhau bằng một màng ở giữa như mô hình dưới đây:
- 93 (RCl) (NaCl) R+ (C1) Na+ (C2) Cl- (C1) Cl- (C2) (1) Hình 5.2 : Sơ đồ phân bố ion ở hai phía màng trong trạng thái ban đầu. Giả sử sau một thời gian ngắn, sẽ có một lượng ion Na+ và Cl- đi qua màng với nồng độ X. Như vậy đã có sự di chuyển của Na+ và Cl- từ bình (2) sang bình (1). Bây giờ ta thấy nồng độ của mỗi loại ion ở hai phía màng được phân bố trở lại trong quá trình cân bằng mới ở trạng thái tiếp theo, được mô tả như sơ đồ dưới đây: (RCl) (NaCl) R+ (C1) Na+ (X) Na+ (C2-X) Cl- (C1+X) Cl- (C2-X) (1) Hình 5.3 : Sơ đồ phân bố ion ở hai phía màng ở trạng thái cân bằng mới Để tránh tình trạng tích tụ điện tích dương về một phía, nên sự di chuyển thường xảy ra một cách đồng thời với cả hai loại ion Na+ và Cl- . Sự dịch chuyển của các ion chỉ tạm dừng lại khi tiến đến trạng thái cân bằng : [Na+]1 [Cl-]1 = [Na+]2 [Cl-]2 (5.14)
- 94 Cân bằng mới này được gọi là trạng thái cân bằng Donnan (Donnan equilibrium). Đặc điểm của trạng thái này là khi cân bằng diễn ra, trong mỗi ngăn đều có sự trung hoà về điện: [R+]1 + [Na+]1 = [Cl-]1 [Na+]2 = [Cl-]2 (5.15) Ở trạng thái sau là trạng thái mà hệ tiến tới sự cân bằng động. Khi trạng thái cân bằng xảy ra, nếu thay các giá trị (5.15) vào phương trình (5.14) ta được: (C2 - X )2 = (C1 + X ) X 2 C2 (5.16) X= C1 + 2C 2 Khảo sát trong các trường hợp đặc biệt, từ phương trình trên ta thấy: *Nếu nồng độ ion R+ hay Cl- lúc đầu rất bé (C1 >C2 ) so với môi trường bên ngoài, thì cơ chất khuyếch tán qua màng xem như không đáng kể: X ≈0 (5.18) *Nếu nồng độ dung dịch hoà tan giữa hai môi trường cân bằng nhau (C1 = C2 ) thì : X = C2 / 3 (5.19) Từ các trường hợp trên ta có nhận xét là: Khi tế bào tiếp xúc với dung dịch chất điện ly có cùng loại và với gốc proteine là đại phân tử ion chính của tế bào, thì trong tất cả các trường hợp đều có một lượng chất nhất định đi vào tế bào. Dưới ảnh hưởng của quá trình vận chuyển đã làm cho áp suất thẩm thấu phía bên trong của tế bào luôn luôn có giá trị lớn hơn so với môi trường xung quanh. * Hiệu điện thế Ở trạng thái cân bằng Gibbs - Donnan thì giữa hai phía màng luôn luôn tồn tại một sự chênh lệch điện thế. Hiệu điện thế xuất hiện là do có sự
- 95 phân bố không đồng đều các ion ở trạng thái cân bằng Donnan. Hiệu điện thế đó được gọi là hiệu điện thế màng (Um). Theo thí dụ trên ta thấy, khi cân bằng diễn ra thì phương trình cân bằng Gibbs -Donnan cho ta: [Na+]1 [Cl-]1 = [Na+]2 [Cl-]2 Có thể viết lại theo tỷ số nồng độ ion như sau: [Cl − ]1 [ Na + ] 2 (5.20) = [Cl − ] 2 [ Na + ]1 Lúc đó, phương trình hiệu số điện thế điện hoá của Nernst được viết lại cho hiệu điện thế màng là: RT [ Na + ] 2 RT [Cl − ]1 Um = = ln ln (5.21) ZF [ Na + ]1 ZF [Cl − ] 2 III. Điện thế tĩnh. Trong cơ thể động vật, trên các tế bào, mô sống thường xuất hiện và tồn tại nhiều loại điện thế khác nhau. Các loại điện thế này có cùng nguồn gốc như nhau nhưng tuỳ theo nguyên nhân xuất hiện, phương pháp đo đạc và điều kiện thí nghiệm mà ta có thể phân chia ra thành nhiều loại có tên gọi khác nhau. Đó là các loại điện thế cơ bản như điện thế nghỉ, điện thế tổn thương, điện thế hoạt động, điện thế tại chỗ. Điện thế tĩnh hay còn gọi là điện thế nghỉ. Đó là điện thế đặc trưng cho trạng thái sinh lý bình thường của đối tượng sinh vật. Nói cách khác, điện thế này cũng đặc trưng cho tính chất điện của hệ thống sống ở trạng thái trao đổi chất bình thường. Điện thế tĩnh chính là hiệu điện thế bình thường tồn tại ở hai phía màng, được xác định bằng cách ghi đo sự chênh lệch hiệu thế giữa tế bào chất và dịch ngoại bào. Có thể tiến hành thí nghiệm như dưới đây. 1. Thí nghiệm. Để khảo sát sự biến đổi dòng điện và đo hiệu điện thế màng của một tế bào (mô sống hay một sợi thần kinh...) nào đó, thông thường ta hay sử dụng phương pháp ghi đo vi điện cực nội bào. Thí nghiệm được tiến hành như hình 5.4 (a,b,c) dưới đây:
- 96 ( ( ( a b c Hình 5.4: Ghi đo điện thế nghỉ. a) Đặt hai điện cực phía ngoài màng sinh học. b) Đặt một điện cực bên ngoài và một vi điện cực xuyên qua màng. c) Cắm hai vi điện cực xuyên qua màng. Ghi đo bằng cách đặt hai điện cực trên bề mặt sợi thần kinh, ta thấy kim điện kế ở đồng hồ đo dòng điện không lệch khỏi điểm không. Điều đó chứng tỏ không có sự chênh lệch điện thế giữa chúng (hình 5.4a). Nếu đặt một điện cực ở phía bên ngoài màng và một vi điện cực cắm xuyên qua màng, ta thấy giữa hai điện cực này có xuất hiện một hiệu điện thế (hình 5.4b). Còn khi chọc cả hai vi điện cực xuyên qua màng thì ta cũng thấy kim điện kế vẫn chỉ giá trị không. Điều đó chứng tỏ giữa hai điện cực không có một sự chênh lệch điện thế nào. (Hình 5.4c). Kết quả thí nghiệm trên cho thấy: Giữa mặt ngoài tế bào không bị tổn thương và môi trường bên ngoài không có sự chênh lệch điện thế. Ngược lại giữa phần bên trong tế bào và môi trường bên ngoài luôn luôn tồn tại một hiệu điện thế nào đó. Sự chênh lệch điện thế này được gọi là điện thế nghỉ hay điện thế tĩnh của màng (Resting membrane potential). 2. Đặc điểm. Điện thế nghỉ có hai đặc điểm như sau: - Mặt trong tế bào sống luôn luôn có giá trị điện thế âm so với mặt bên ngoài. Nói cách khác chiều điện thế nghỉ là không đổi. - Bình thường điện thế nghỉ có giá trị điện thế biến đổi rất chậm theo thời gian. Bằng các phương pháp và kỷ thuật ghi đo tốt, ta có thể duy trì dòng điện này trong một thời gian dài. Độ lớn điện thế giảm chậm theo thời gian. Giá trị này chỉ giảm đi khi chức năng của tế bào, hay của sợi cơ bắt đầu xuất hiện.
- 97 3.Các yếu tố ảnh hưởng đến điện thế nghỉ. Điện thế nghỉ đặc trưng cho trạng thái sinh lý bình thường của hệ thống sống. Nếu thay đổi trạng thái sinh lý sẽ liên quan đến trạng thái chức năng của hệ. Do đó bất kỳ yếu tố nào làm ảnh hưởng đến quá trình trao đổi chất bình thường của nó cũng đều ảnh hưởng đến điện thế nghỉ của hệ, chẳng hạn như: - Dưới tác dụng của dòng điện bên ngoài. - Giá trị điện thế bị thay đổi khi làm thay đổi thành phần ion của môi trường. - Sự tác động của một số độc tố lên hệ thống sống cũng làm biến đổi nhanh điện thế màng. - Khi thay đổi lượng oxy trong môi trường cũng sẽ liên quan đến quá trình hô hấp của mô, cơ..., do đó sẽ làm ảnh hưởng đến điện thế nghỉ. - ... Ở các loại tế bào khác nhau thì điện thế nghỉ cũng có giá trị khác nhau. Giá trị này thay đổi trong khoảng từ -10mV đến -100mV. Sự chênh lệch điện thế tồn tại giữa các phần khác nhau trong một hệ sinh vật cũng là một trong những yếu tố đặc trưng cho cơ thể sống. IV. Điện thế tổn thương. Điện thế tổn thương là hiệu điện thế xuất hiện do sự chênh lệch điện thế giữa vùng bị tổn thương và vùng không bị tổn thương. Sự tổn thương xảy ra có thể do nhiều nguyên nhân khác nhau (như dưới tác động cơ học, nhiệt, điện, hoặc hoá học ...) đều làm xuất hiện sự chênh lệch điện thế. Loại điện thế này có cùng dạng như nhau trên các đối tượng sinh vật. Đặc trưng cơ bản của điện thế tổn thương là: - Giá trị của hiệu điện thế giảm dần và biến đổi chậm theo thời gian. - Điện thế tổn thương phụ thuộc nhiều vào điều kiện khảo sát và phương pháp ghi đo. - Độ lớn điện thế bị ảnh hưởng nhiều tuỳ thuộc vào điều kiện sinh lý của các đối tượng nghiên cứu. 1. Đối tượng động vật. Thực nghiệm cho thấy rằng, ở trạng thái sinh lý bình thường thì các thành phần ion ở mặt trong màng tế bào (mô, cơ...) và phía bên ngoài có sự phân bố ổn định. Còn giữa các vị trí khác nhau ở môi trường bên ngoài không bị tổn thương so với môi trường xung quanh sẽ không có sự
- 98 chênh lệch nào về điện thế. Nói cách khác, ở trạng thái sinh lý bình thường ta thấy có sự phân bố điện tích ban đầu ở hai phía màng sinh học. Nếu khi các tế bào (mô) bị tổn thương, sẽ làm ảnh hưởng đến quá trình vận chuyển chất, mà cụ thể là sự trao đổi các chất qua màng tế bào. Nói tóm lại, sự tổn thương đối tượng sống mà cụ thể như tế bào (mô, cơ,..) đã làm thay đổi trạng thái chức năng của tế bào hay sẽ làm thay đổi trạng thái sinh lý bình thường của các đối tượng nghiên cứu. 2. Đối tượng thực vật. Khảo sát tính chất điện trên đối tượng thực vật cũng cho thấy có nhiều điểm tương tự như ở động vật, đó là: - Có sự chênh lệch điện thế giữa vùng bị tổn thương và vùng không bị tổn thương. - Điện thế tổn thương có giá trị âm. - Điện thế này tồn tại trong một khoảng thời gian ngắn. - Giá trị điện thế giảm nhanh theo thời gian và tuỳ thuộc vào điều kiện thí nghiệm, phụ thuộc vào khoảng cách giữa các vùng khảo sát. - Khả năng xuất hiện điện thế này chỉ khu trú tại vùng bị thương tổn. 3. Các yếu tố ảnh hưởng. Thực nghiệm chứng tỏ rằng, các yếu tố nào làm ảnh hưởng đến quá trình trao đổi chất bình thường của tế bào và mô đều làm thay đổi giá trị điện thế tổn thương như: - Ảnh hưởng của nhiệt độ môi trường. - Thay đổi thành phần môi trường, nhất là đối với Oxy liên quan nhiều trong quá trình trao đổi chất. - Sự tác động của các trường lực điện bên ngoài (điện trường, từ trường..) liên quan đến sự chuyển dịch của các ion qua màng. - Sự tác động của các độc tố vào môi trường có liên quan đến sự thay đổi điều kiện sinh lý bình thường. V. Điện thế hoạt động. Điện thế hoạt động là sự dao động nhanh của điện thế màng. Dao động điện màng xuất hiện trong các tế bào thần kinh, cơ, và một số tế bào khác khi có sóng hưng phấn truyền qua. Do đó dòng điện làm xuất hiện điện thế này còn được gọi là dòng điện hưng phấn. Tất cả tế bào sống đều có đặc tính dễ bị kích thích, tức là có khả năng chuyển từ điều kiện sinh lý bình thường ở trạng thái tĩnh sang trạng thái hoạt hoá. Dưới ảnh hưởng
- 99 của tác nhân kích thích nào đó, tế bào sẽ dễ dàng bị thay đổi tính chất hoá lý của màng. Khi có sóng hưng phấn truyền đến, dấu hiệu điện tích ở hai phía màng tế bào bị đảo ngược hẳn lại so với giá trị điện thế nghỉ lúc ban đầu. Hiệu điện thế này xuất hiện là do có sự chênh lệch về giá trị điện thế giữa hai phía của màng. Lúc này giá trị của điện thế ở mặt bên ngoài sẽ âm hơn so với điện thế mặt bên trong của nó. Để xác định điện thế hoạt động, thông thường ta sử dụng các kỹ thuật ghi đo vi điện cực nội bào. Có thể tiến hành khảo sát sự xuất hiện điện thế hoạt động bằng hai phương pháp như dưới đây: 1. Phương pháp 2 pha. Có thể tiến hành khảo sát trên sợi thần kinh được kích thích tại ví trí (1), hai điện cực đặt tại hai vị trí (2) và (3) trên mặt sợi thần kinh. Theo dõi sự biến đổi giá trị điện thế của chúng qua một điện kế G nhạy nối giữa hai điện cực như hình (5.5): U= U= 0 60V (a) (b) (1) (2) (3) (1) (2) (3) U= U=- 0 60V (c) (d) (1) (2) (3) (1) (2) (3) Hình 5.5: Ghi đo điện thế hoạt động hai pha a) Kích thích tại vị trí (1). b) Sóng hưng phấn truyền đến vị trí (2). c) Sóng hưng phấn nằm giữa vị trí (2) và (3). d) Sóng hưng phấn truyền đến vị trí (3).
- 100 Nếu dùng một tác nhân nào đó kích thích sợi thần kinh tại vị trí (1); thì theo quan niệm cổ điển sẽ có một sóng hưng phấn mang điện tích âm truyền dọc theo sợi thần kinh. - Khi sóng kích thích lan truyền đến vị trí (2) thì giữa hai điện cưc đặt tại vị trí (2) và (3) sẽ xuất hiện một giá trị hiệu điện thế U nào đó, khoảng 60 mV (hình 5.5b) - Sóng kích thích lan dần về vị trí (3) thì hiệu điện thế này giảm dần và tiến gần đến giá trị điện áp bằng không (U = O mV) khi sóng hưng phấn ở trong vùng giữa vị trí (2) và (3). Khi sóng kích thích tiến tới vị trí (3) thì hiệu điện thế giữa hai cực biến đổi về phía điện thế âm (hình 5.5c). - Khi sóng kích thích truyền đến vị trí (3) thì điện thế âm này đạt giá trị điện áp tới hạn (Uth) (Uth = -60 mV) như hình 5.5d. - Khi sóng rời khỏi vị trí (3) thì hiệu điện thế giữa hai điện cực trở về lại giá trị U bằng không như ban đầu. Theo dõi đặc tuyến biến đổi theo thời gian ta được dạng điện thế hoạt động như (hình 5.6): U Ub 0 t Ud Hình 5.6: Đặc tuyến biến đổi của điện thế hoạt động hai pha theo thời gian 2. Phương pháp một pha. * Phương pháp ghi đo. Phương pháp một pha là phương pháp ghi đo điện thế hoạt động bằng cách dùng một điện cực đặt tại vị trí (2) và một vi điện cực khác cắm xuyên qua màng đặt ở vị trí (3). Sau đó kích thích tại vị trí (1) và khảo sát sóng hưng phấn kích thích truyền dọc theo đối tượng nghiên cứu (tế bào, sợi cơ, ...) như (hình 5.7):
- 101 U=- U= 60V 0 (a) (b) (1) (2) (3) (1) (2) (3) U=- 60V (c) (1) (2) (3) Hình 5.7: Sơ đồ ghi đo điện thế hoạt động một pha trên sợi thần kinh. a) Kích thích tại vị trí (1). b) Sóng kích thích truyền đến vị trí (2). c) Sóng kích thích truyền đến vị trí (3). - Khi chưa kích thích, giữa điện cực (2) và vi điện cực (3), có xuất hiện một sự chênh lệch điện thế, đó là điện thế nghỉ của sợi thần kinh. Điện thế này có giá trị khoảng - 60mV đến - 100mV. - Khi kích thích tại vị trí (1), sóng hưng phấn lan truyền đến vị trí (2) thì hiệu điện thế này tăng dần lên từ giá trị điện thế âm đến giá trị không. Hiệu thế này tăng nhanh và đạt tới giá trị cao nhất tại điện thế không (U = 0) khi sóng hưng phấn đến vị trí (2) (hình 5.7b). - Khi sóng hưng phấn truyền từ vị trí (2) đến (3) thì hiệu điện thế hoạt động một pha giảm trở lại về điện thế nghỉ như lúc đầu (-80mV) Vậy điện thế hoạt động một pha chính là sự biến đổi nhanh chóng của điện thế ngh ỉ dưới tác dụng của một tác nhân kích thích nào đó. Dạng điện thế hoạt động một pha biến đổi theo thời gian trong thí nghiệm trên một sợi thần kinh, được biểu diễn như (hình 5.8):
- 102 U(mV ) 0 - 40 - 80 t a c b Hình 5.8: Đặc tuyến biến đổi của điện thế hoạt động một pha theo thời gian. * Các giai đoạn hình thành. Khoảng vài thập niên trở lại đây, nhờ các thiết bị ghi đo hiện đại, điện thế hoạt động một pha được biểu diễn một cách tỉ mỉ, chính xác hơn. Sự hình thành điện thế hoạt động được chia ra làm nhiều giai đoạn như (hình 5.9). Đo trên sợi thần trục khổng lồ của thần kinh cá mực, ta thấy điện thế nghỉ có giá trị khoảng -60mV phần đỉnh của điện thế hoạt động có giá trị khoảng 50mV. U Kêch (mV) thêch 60 B 40 20 Càõm vi âiãûn cæûc O A B ’ ’ - 20 - 40 - D C A 60 - 80 Hình 5.9: Các giai đoạn biến đổi của điện thế hoạt động
- 103 Điện thế hoạt động có các giai đoạn biến đổi là: + Giai đoạn khử cực (Depolarization), đoạn AA’. Lúc này hiệu điện thế ở hai phía màng biến đổi từ giá trị điện thế nghỉ (U nghỉ) đến điểm có điện thế bằng không (U = 0 mV) + Giai đoạn quá khử cực, đoạn A’BB’. Trong giai đoạn này hiệu điện thế ở hai phía màng vượt quá giá trị điện thế không, tiếp tục biến đổi về phía có điện thế dương. + Giai đoạn phân cực lại (Repolarization), đoạn B’C. Đó là giai đoạn mà hiệu điện thế ở hai phía màng giảm trở lại về giá trị điện thế nghỉ. + Giai đoạn quá phân cực, đoạn CD. Giai đoạn này ứng với lúc hiệu điện thế ở hai phía màng có giá trị âm hơn điện thế nghỉ. Nếu kích thích có cường độ đủ lớn ta nhận thấy rằng: - Trong thời gian xuất hiện pha lên (nhánh lên) điện thế màng vượt quá giá trị điện thế không, ta thấy có sự đảo cực của điện thế màng. - Trong pha xuống (nhánh xuống), màng có sự phân cực lại. Điện thế hoạt động ở pha này phụ thuộc vào khoảng cách giữa hai điện cực và phụ thuộc nhiều vào tốc độ dẫn truyền hưng phấn. Các nghiên cứu của Erlange và Gatse đã chứng minh rằng: -Điện thế hoạt động ghi được từ một thần kinh là tổng các điện thế lan truyền trên các sợi tơ cơ cấu tạo nên sợi trục thần kinh đó (hình 5.10) U (mV) 10 0 50 0 1, 0, t 2, 2 4 (ms) 4 Hình 5.10: Điện thế hoạt động của tơ cơ và sợi thần kinh. Từ đặc tuyến trên, tác giả đã giải thích cho ta thấy rằng:-Có sự tương ứng giữa giá trị điện thế hoạt động ghi đo được trên sợi của thần kinh của
- 104 mèo (nét đứt) và điện thế hoạt động xuất hiện ghi đo được trên từng sọi tơ thần kinh tổng hợp nên sợi trục thần kinh đó (nét liền). VI. Bản chất của điện thế tĩnh và điện thế tổn thương. Để giải thích về cơ chế, bản chất và nguồn gốc của các loại điện thế sinh vật, ta dựa vào một số giả thuyết, các lý thuyết ion cũng như một số cách lý giải khác của các nhà khoa học: Có nhiều quan điểm khác nhau để giải thích về sự hình thành điện thế sinh học. Tuy nhiên lý thuyết mà đang được nhiều nhà khoa học chấp nhận và có cơ sở vững chắc hơn cả, đó là “Lý thuyết ion màng”. Theo thuyết này, trong quá trình hình thành điện thế sinh vật thì các ion (đặc biệt là các ion Na+, K+, Cl-) ở trong dịch nội bào và bên ngoài tế bào đóng vai trò quyết định. Cho đến nay lý thuyết này vẫn chiếm nhiều ưu thế trong việc giải thích hiện tượng điện sinh vật. Dựa vào lý thuyết trên, ta có thể giải thích về sự hình thành các loại điện thế sinh vật cơ bản. Trước khi giải thích cơ chế hình thành điện thế nghỉ và điện thế tổn thương, ta khảo sát sự phân bố các loại ion chính ảnh hưởng đến hiệu thế màng. Ở trạng thái bình thường, có thể xác định được giá trị điện thế tĩnh tương ứng với sự phân bố nồng độ ion ở hai phía màng. Chẳng hạn như sự phân bố ion trong tế bào “cơ Mamalian” như (bảng 5.1): Bảng 5.1: Nồng độ một số loại ion trong tế bào cơ Mamalian εm (mV) Nồng độ ion dịch Nồng độ ion dịch [ion]0 / [ion]i ngoại bào [ion]0 nội bào [ion]i (μM/cm3) (μM/cm3) Cations: Cations Na+ Na+ 145 12 12,1 66 K+ K+ 4 155 1/39 -97 + -5 H+ 13.10-5 H 3,8.10 1/3,4 -32 .. .. .. .. .. .. ion khác 5
- 105 Anion Anion Cl- Cl- 120 4 30 -90 HCO3- HCO3- 27 8 3,7 -32 .. .. .. .. .. .. A- Ion khác 7 155 Điện thế 0 -90 1/30 -90 1. Nhận xét: Khảo sát các thành phần tương tự như trên ở nhiều đối tượng nghiên cứu khác nhau, như thần kinh ếch, tim chuột cống, cơ xương chó .. .., ta thấy có sự phân bố không đồng đều của các loại ion ở hai phía màng. Đặc biệt, đối với các loại ion Na+, K+, Cl- cho thấy tỷ lệ giữa các ion này thường là: - Ion K+ trong tế bào lớn hơn bên ngoài khoảng vài chục lần. - Ion Na+ ở bên ngoài lớn hơn bên trong rất nhiều. - Ion Cl- ở bên ngoài lớn hơn bên trong khoảng 30 lần. 2. Lý thuyết ion màng Bernstein là người đầu tiên cho rằng, điện thế tĩnh là kết quả của sự phân bố không đều các ion ở hai phía màng tế bào. Ở trạng thái tĩnh, màng không thấm ion Na+ và Cl- mà chỉ cho các ion K+ lọt qua. Hiện tượng vận chuyển các chất xảy ra, do đó có sự phân bố không đều cả ba loại ion này ở hai phía màng tế bào. Ngoài ra màng có tính bán thấm và tính thấm của màng đối với từng loại ion là khác nhau, đó là yếu tố cơ bản đã tạo nên điện thế tĩnh. Điện thế tĩnh có các giá trị khác nhau tuỳ thuộc vào đối tượng nghiên cứu. Boyler và Conwey phát triển thêm quan điểm của Bernstein, bằng cách chứng minh cho ta thấy rằng màng đã thấm đồng thời đối với cả ion K+ và Cl-. Ở trạng thái tĩnh, các ion Na+, K+, Cl- được phân bố trở lại tại hai phía màng. Quá trình vận chuyển và cơ chế hoạt động giống như sự phân bố của các ion trong trạng thái cân bằng Donnan. Do đó, điện thế tĩnh (US) cũng được xác định bằng tỉ số nồng độ của các loại ion đã khuyếch tán qua màng. Hơn nữa do tính bán thấm của màng đối với từng loại ion mà có sự phân bố lại các điện tích của chúng ở hai phía màng. Thực nghiệm cho thấy phía trong màng tích điện âm còn phía ngoài màng tích điện dương.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
GIÁO TRÌNH HÓA SINH HỌC
204 p | 1486 | 400
-
Giáo trình hóa sinh học - Chương 1
44 p | 648 | 211
-
Giáo trình Hóa sinh học - GS.TS. Mai Xuân Lương
172 p | 452 | 171
-
Giáo trình Tin - Sinh học part 1
15 p | 480 | 170
-
Giáo trình Tin - Sinh học part 2
15 p | 310 | 122
-
Giáo trình Tin - Sinh học part 3
15 p | 295 | 115
-
Giáo trình Tin - Sinh học part 4
15 p | 263 | 107
-
Giáo trình Tin - Sinh học part 6
15 p | 243 | 97
-
Giáo trình Tin - Sinh học part 5
15 p | 257 | 94
-
Giáo trình Tin - Sinh học part 7
15 p | 210 | 90
-
Giáo trình Hóa sinh học (Sách dùng cho đào tạo dược sỹ Đại học): Phần 1
127 p | 1286 | 84
-
Giáo trình Tin - Sinh học part 8
15 p | 192 | 79
-
Giáo trình Tin - Sinh học part 9
15 p | 183 | 77
-
Giáo trình Tin - Sinh học part 10
9 p | 182 | 75
-
Giáo trình Hóa sinh học (Sách dùng cho đào tạo dược sỹ Đại học): Phần 2
216 p | 377 | 75
-
Giáo trình Hóa sinh học miễn dịch trong lâm sàng: Phần 2
78 p | 173 | 47
-
Giáo trình Hóa sinh học: Phần 1 - GS. TSKH Phạm Thị Trân Châu
156 p | 86 | 15
-
Giáo trình Hóa sinh học: Phần 2 - GS. TSKH Phạm Thị Trân Châu
123 p | 66 | 12
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn