intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình- Tự động hóa quá trình nhiệt-p1-chương 5

Chia sẻ: Lit Ga | Ngày: | Loại File: PDF | Số trang:5

58
lượt xem
15
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chương 5: Các đặc tính động của hệ thống tự động

Chủ đề:
Lưu

Nội dung Text: Giáo trình- Tự động hóa quá trình nhiệt-p1-chương 5

  1. TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I CHÆÅNG 5: PHÆÅNG TRÇNH VI PHÁN CUÍA HÃÛ THÄÚNG TÆÛ ÂÄÜNG Muäún tçm phæång trçnh vi phán cuía hãû thäúng thç ta cáön phaíi xaïc âënh phæång trçnh cuía caïc kháu taûo nãn hãû thäúng âoï. - Âãø chuyãøn phæång trçnh vi phán cuía caïc kháu thaình phæång trçnh vi phán hãû thäúng thç ta phaíi loaûi táút caí caïc biãún säú træì thäng säú maì ta quan tám, thæåìng ta giæî laûi hàòng säú cuía hãû thäúng vaì thäng säú âiãöu chènh - Trong thæûc tãú ta coï thãø sæí duûng 1 trong 3 phæång phaïp sau: - 5.1 Phæång phaïp thãú: Vê duû: Sæí duûng hãû thäúng tæû âäüng bãø næåïc coï tæû cán bàòng âáöu vaìo vaì âáöu ra ( træåïc ) l m ϕ λ 1 Qv, Pv µ ξ ∆H ∆X 3 2 Ho m l Qr, Pr 1- Âäúi tæåüng âiãöu chènh ( bãø næåïc ) 2- Pháön tæí âo læåìng (phao ) 3- Hãû thäúng tay âoìn Nhæ ta âaî biãút phæång trçnh vi phán cuía caïc kháu trãn laì: * Phæång trçnh vi phán cuía âäúi tæåüng : To. ϕ’ + A . ϕ = µ - λ (1) * Phæång trçnh cuía pháön tæí âo læåìng TP2. ξ’’ + TC . ξ’ +δÂL ξ = ϕ (2) * Phæång trçnh cuía tay âoìn liãn hãû : µ=ξ (3) Viãút caïc phæång trçnh trãn dæåïi daûng thuáût toaïn ⎧ T o . P .ϕ + A ϕ = µ − λ ⎪2 2 ⎪ ⎨ T P . P .ζ + T c . P .ζ + δ DL .ζ = ϕ (1’) & (2’) & (3’) ⎪ ⎪µ = ζ ⎩ Thay 3’ vaìo 2’ ta coï ⇒ T P . P . µ + T C . P . µ + δ DL . µ = ϕ 2 2 (4) Ruït µ tæì 4 thay vaìo 1’ ta âæåüc : 53
  2. TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I ϕ ( T o . . P + A )ϕ − = −λ T P . P + T C . P + δ DL 2 2 ⇒ [ ] ⎛ ( T o + A )( T p2 . P 2 + T C . P + δ )−1 ⎞ ϕ⎜ ⎟ = −λ DL ⎜ ⎟ T p2 P 2 + T C . P + δ DL ⎝ ⎠ [T .T ] .P 3 + (To .TC + AT P2 ). P 2 + (To .δ DL + ATC ) P + A δ DL − 1 ϕ 2 o P [ ] = − λ TP2 .P 2 + TC P + δ DL (5) (5) laì phæång trçnh vi phán cuía hãû thäúng tæû âäüng viãút våïi biãún säú ϕ dæåïi daûng ϕ&λ thuáût toaïn, noï mä taí tæång quan giæîa hay coìn goüi phæång trçnh chuyãøn âäüng coï nhiãùu cuía hãû thäúng - Khi ta ruït nhiãùu âi λ = 0 thç ta coï phæång trçnh chuyãøn âäüng tæû do cuía hãû thäúng vaì coï daûng : [T .T ] .P 3 + (ToTC + ATP2 ) P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 ϕ = 0 2 (6) o P ϕ Phæång trçnh hãû säú træåïc goüi laì phæång trçnh âàûc tênh cuía hãû thäúng [T .T ] .P 3 + (ToTC + ATP2 ) P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 = 0 2 (7) o P Giaíi hãû phæång trçnh 1’ , 2’ , 3’ våïi biãn säú µ, láúy (4) thay vaìo (1’) ( biãún µ ) Ta coï : To . P {.....} + A {......} = µ − λ trong { .. .. } laì biãøu thæïc cuía ϕ tæì (4) nhán vaìo vaì âàût thæìa säú chung ta coï [ ] ⇒ To .TP2 .P3 + (ToTC + ATP2 ) 2 P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 µ = −λ (5’) So saïnh (5) vaì (5’) ta tháúy daûng phæång trçnh âàûc tênh cuía hãû thäúng khäng âäøi nghéa laì daûng cuía noï khäng phuû thuäüc vaìo daûng cuía biãún säú maì tæì âoï phæång trçnh âàûc tênh thu nháûn âæåüc. Hãû thäúng åí âáy goüi laì hãû thäúng báûc 3 ( báûc cuía phæång trçnh âàûc tênh ) Trong træåìng håüp chung nháút phæång trçnh mä taí hãû thäúng tæû âäüng báûc n laì ( a n . P n + a n −1 P n −1 + ...+ a 1 P + a o )ϕ = ( bm P m + ... bo ) λ (8) A ( P )ϕ = B ( P ) λ hoàûc (8’) Nãúu hãû thäúng caìng phæïc taûp thç n caìng låïn. Phæång phaïp naìy chè giaíi cho træåìng håüp êt phæång trçnh ! 5.2. Phæång phaïp âënh thæïc: Âãø thæûc hiãûn phæång phaïp naìy ta qui æåïc mäüt säú caïch viãút: Qui æåïc : - Táút caí caïc biãún säú phuû thuäüc cuía hãû thäúng viãút åí vãú traïi cuía phæång trçnh coìn caïc biãún säú âäüc láûp viãút åí vãú phaíi - Caïc phæång trçnh cuía caïc kháu âæåüc sàõp xãúp tæì trãn xuäúng dæåïi sao cho nhæîng biãún säú giäúng nhau nàòm trong mäüt cäüt biãún säú naìo khäng coï trong phæång trçnh cuía kháu âang xeït âæåüc viãút våïi hãû säú khäng 54
  3. TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I Giaí sæí : hãû thäúng tæû âäüng âæåüc mä taí = 1 loaût phæång trçnh sau ⎧ C11 ( P )ϕ 1 + C12 ( P )ϕ 2 + ......+ C1n ( P )ϕ n = A1 ⎪ ⎪ C 21 ( P )ϕ 1 + C 22 ( P )ϕ 2 + ......+ C 2 n ( P )ϕ n = A2 ⎨ ⎪....................................... ⎪ C ( P )ϕ + C ( P )ϕ + ......+ C ( P )ϕ = A ⎩ n1 1 n2 2 nn n n ϕ 1 , ϕ 2 ..... ϕ n - Caïc biãún säú phuû thuäüc cuía hãû thäúng A1 , A2 ..... An - Caïc biãún säú âäüc láûp cuía hãû thäúng C11 .. . .. .. .Cn - Caïc hãû säú trong phæång trçnh âäüng cuía caïc kháu Tæì lyï thuyãút cuía phæång trçnh tuyãún tinh thç ta coï thãø xaïc âënh báút kyì giaï trë ϕ naìo tæì phæång trçnh trãn bàòng caïch : C 12 ( P )...... A1 ....... C 1 n ( P ) C 22 ( P )...... A2 ...... C 2 n ( P ) .......... .......... .......... ....... ∆ C ( P )...... An ...... C nn ( P ) ϕ1 = n2 =i ∆ C 11 ( P ) C 12 ( P )..... C 1 n ( P ) C 21 ( P ) C 22 ( P )..... C 2 n ( P ) .......... .......... .......... ....... C n ( P ) C 12 ( P ).... C nn ( P ) ∆ - Laì âënh thæïc chênh tæì caïc hãû säú ∆i - Laì âënh thæïc hçnh thaình tæ ìâënh thæïc ∆ bàòng caïch thay cäüt thæï i = cäüt hãû säú tæû do ∆i ϕi = ∆ Aïp duûng cho vê duû trãn Viãút laûi 3 phæång trçnh theo nguyãn tàõc vaì chuyãøn âãún daûng thuáût toaïn ( To P + A )ϕ − µ + oζ = − λ (1’) − 1. ϕ − 0 µ + ( TP2 + TC . P + δ DL )ζ = 0 (2’) 0ϕ + 1. µ − ζ = 0 (3’) (To P + A) − 1 0 (T + TC P + δ DL ) ; ∆= −1 2 0 P −1 0 1 −λ −1 0 (T + TC P + δ DL ) ∆ϕ = 0 2 0 P −1 0 1 55
  4. TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I (To P + A) − λ (To P + A) − 1 − λ 0 (T + TC P + δ DL ) ; ∆µ = −1 ∆ ξϕ = −1 2 0 0 0 P −1 0 0 0 1 0 Khai triãøn caïc âënh thæïc naìy ∆ϕ ∆µ ∆ζ ϕ= µ= ζ= ⇒ ; ; ∆ ∆ ∆ [ ] ∆ = − To . TP . P + ( To TC + ATP ) P + ( To .δ DL + ATC ) P + Aδ DL − 1 2 3 22 2 ∆ϕ = λ ( TP2 . P 2 + TC . P + δ DL ) ⇒ Ta cuîng âæåüc phæång trçnh (5) tæïc laì : [T .T ] .P 3 + (To .TC + AT P2 ). P 2 + (To .δ DL + ATC ) P + A δ DL − 1 ϕ 2 o P [ ] = − λ TP2 .P 2 + TC P + δ DL 5.3: Phæång phaïp duìng haìm säú truyãön cuía caïc kháu vaì cuía hãû thäúng: λ ϕ µ W(p)BÂC W(p)ÂT Tçm haìm säú truyãön cuía caïc pháön tæí - Cuía âäúi tæåüng : ϕ W ( P ) dt = µ−λ - Caïc bäü âiãöu chènh µ ϕ W ( P ) BDC = W ( P ) HT = vaì ϕ λ Nãúu hãû trãn laì håí ( âæït ) ⇒ W (P)HTHåí = W(P)ât . W(P) BÂC Tæì trãn ⇒ µ = W ( P ) BDC .ϕ ϕ ⇒ W ( P ) dt .W ( P ) BDC .ϕ + W ( P ) dt .λ = ϕ ⇒ W ( P ) dt = W ( P ) BDC .ϕ + λ ⇒ (1 − W ( P ) dt .W ( P ) BDC )ϕ = λ .W ( P ) dt 56
  5. TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I ⇒ (1 − W ( P ) HTH )ϕ = λ .W ( P ) dt (10) ϕ W ( P ) dt ⇒ = λ 1 − W ( P ) HTH W ( P ) dt Váûy W(P)HTK = (11) 1 − W ( P ) HTH Thæûc cháút (10) cuîng laì phæång trçnh vi phán viãút dæåïi daûng thuáût toaïn ⇒ pháön træåïc ϕ cuîng laì pháön âàûc tênh cuía hãû thäúng ⇒ Phæång trçnh âàûc tênh cuía hãû thäúng 1 - W(P) HTH = 0 Váûy tæì tênh cháút cuía hãû håí ta coï thãø suy ra âàûc tênh cuía hãû kên ( quan troüng ) Thæåìng trong thæûc tãú µ vaì λ traïi dáúu nhau do âoï phæång trçnh âàûc tênh cuía hãû thäúng laì: 1 + W(P) HTH = 0 Vê duû: Âäúi våïi âäúi tæåüng bãø næåïc: 1 W ( P ) dt = T0 P + A 1 W ( P) BDC = 2 2 TP P + TC P + δ dl 1 => W ( P) HH = ( )( ) TP P + A TP P + TC P + δ dl 22 1 Váûy phæång trçnh âàûc tênh hãû thäúng laì 1 − =0 ( )( ) TP P + A TP P + TC P + δ dl 22 57
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2