intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giới thiệu các phương pháp giải toán trọng tâm (Tái bản lần thứ II, có chỉnh sửa & bổ sung): Phần 2

Chia sẻ: Liên Minh | Ngày: | Loại File: PDF | Số trang:102

99
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nối tiếp nội dung phần 1 tài liệu Phương pháp giải toán trọng tâm, phần 2 cung cấp cho người đọc các bài giảng: Xác suất, nhị thức Newton, các bài toán về tổ hợp, chỉnh hợp và phép đếm, phép tính tích phân và ứng dụng, đường thẳng trong mặt phẳng,... Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Giới thiệu các phương pháp giải toán trọng tâm (Tái bản lần thứ II, có chỉnh sửa & bổ sung): Phần 2

  1. Giai In 48 Theo quy l^c nhan la c6: IQBI = n i n z n j m = 4 8 . Tilf 66: P(B) = =~ = JL G p i Q la tap hdp cdc cdch chon 1 0 l a m the Irong 3 0 ta'm the. Ta c6 |Q| = C\l CI 256 16 Trong 3 0 l a m the c6 1 5 l a m the mang so' chJn, 1 5 l a m the mang so' le, 3 la'm fltidu 7: M o t ngu'di bo ngau nhien ba M thU' v^o ba chie'c phong b i da ghi dia the mang so chia he'l cho 1 0 . chi- T i n h xac sua'l de i t nhat co mot la Ihir bo dung phong b i ciia no. ., ^ . G p i A la bien c6' " c 6 5 ta'm the mang so' le, 5 l a m the mang so' chSn trong do Giai chi CO dung 1 ta'm the chia he'l cho 1 0 " . ' -v^' X6t cic day so' ( x i , X 2 , X 3 ) , trong do (x,, X 2 , X 3 ) la m p l ho^n v i cua ba so 1 , 2 , D e tinh A ta l a m nhif sau: D a u l i e n chon 5 ta'm trong 1 5 ta'm mang so' le, 3^ d day Xi = i tufc 1^ la thirthu' i da bo dung dia chi. iani n " . > MVI ,
  2. Phuong phap gi5i T o i n trpng tarn - Phan Huy Khii 'V.H Khang Vi§t Vay theo c o n g thtfc tinh x a c suat c u a b i e n co d o i , thi fjtidy. 3: M p t may bay co 5 dong cd, trong do 3 dong cd d canh phai va 2 dong cd g canh trai. M o i dong c d d canh phai co xac suat bi hong la 0 , 1 . C o n moi dong cd P(A)=1-P(A)=1- 5 canh trai co xac suat b i hong la 0 , 0 5 , cac dong c d boat dong doc lap. T i m xac ,36, suat de may bay thiTc hien chuyen bay an toan trong cac triTdng hdp sau day: Thidu 2: M o t sot cam ra't Idn di/dc phan loai theo each sau: Chpn ngau nhien 2() 1/ M a y bay chi bay di/dc neu co it nhat 3 dong c d l a m viec. qua cam l a m mau d a i dien. N e u mau khong c6 qua cam hong nao thi sot cam 2/ M a y bay c h i bay du'dc ne'u tren m o i canh cua may bay CP i t nhat m p t dong diTdc xep loai 1; neu m a u c6 1 hoSc 2 qua cam hong thi sot cam du'dc xep loai 2 c d l a m viec. j ^t-x con lai du'dc x e p loai 3. Gia suf t i 1$ cam hong la 3%. H a y tinh xac suat de: Giai 1/ Sot cam dufdc x e p loai 1. ' k; 1/ X e t tru'dng hdp may bay thifc hien chuyen bay an toan n e u nhiT co it nhat hai 21 Sot cam du'dc x e p loai 2 . iJ dong cd l a m viec. 3/ Sot cam du'dc x e p loai 3. i " * Gpi A la bien CP " m a y bay thiTc hien chuyen bay an t p a n " , t h i bien CP A la Giai may bay bay khpng an tpan. ., , '^ ^ T i le c a m hong la 3%, tiJc la x^c suat lay ra qua cam hong la 0,03; c6n xae Thep quy ta'c bien co d p i , ta CP: P ( A ) = 1 - P ( A ) (1) suat lay ra 1 qua cam tot la 0,97. M a y bay khpng an tpan ne'u: 1/ Gia thiet sot cam rat Idn c6 nghia la phep l a y cic qua cam ra la cac bien co . HP^C la ca 5 dpng c d b i hpng. Thep quy t^c nhan xac sua't dc dieu nay xay doc lap. ra v d i xac sua't: ( 0 , l ) \ 0 , 0 5 ) l G o i A la bien co "sot cam x e p loai 1". - H P S C la c h i CP m p t dpng c d d canh phai l a m viec, c6n l a i m p i dpng c d bi Theo quy t^c nhan, ta co: P ( A ) = (0,97)^" hong. Thep quy t^c cpng va nhan xac sua't dieu nay x a y ra v d i xdc sua't. 21 G p i B la bie'n cp "spt cam x e p Ipai 2" C^0,05)(0,95)(0,l)'. Gpi B i la b i e n CP "trpng 20 qua cam lay ra mpt qua cam h p n g " Thep quy t^c cpng xac sua't ta CP: G o i B2 la bie'n CP "trpng 20 qua cam lay ra hai qua cam h p n g " . P ( A ) = ( 0 , 1 ) ^ ( 0 , 0 5 ) ' + C\ ( 0 , 9 ) ( 0 , 0 5 ) ' + C[(0,05)(0,95)(0,l)^ . K h i dp B = B1 u B2, trpng dp B , , B2 la hai bien CP xung kh^c. Thep quy iic cpng xac suat ta CP: P ( B ) = P ( B | ) + P(B2). (1) = 0,00016. (2) T r p n g 20 qua c a m lay ra c6 1 qua hpng, tiJc la CP 1 Ian l a y ra qua cam hong Thay ( 2 ) v a p ( 1 ) ta CP: P ( A ) = 1 - 0 , 0 0 0 1 6 = 0 , 9 9 9 8 4 . [,>/ \ va 19 Ian lay ra qua cam tpt; 20 qua cam hpng CP the l a y ra thep C^o cdch. 2/ X e t trirdng hdp m a y bay thiTc hien chuyen bay an tpan ne'u nhiTd m p i canh it nhat CP 1 dpng c d hpat dpng. G p i B la bien CP " m a y bay ihiTc hien chuyen bay V a y thep quy t^c nhan ta CP: P ( B , ) = C^o (0.03)(0,97)'^ . (2) antpan'Mhi P(B) = l - P ( B ) . (3) ' T i T d n g t i r t a c p : P ( B 2 ) = C2^o(0,03f (0,97)'\) M a y bay bay khpng an tpan neu: '' - H P S C la ca ba dpng c d ben phai b i hpng. D i e u nay x a y ra CP xac sua't ( 0 , 1 ) ^ Thay (2) (3) v a p ( l ) ta c6: P ( B ) = C^„(0,03){0,97)'%C2„(0,03)'(0.97)". - H P S C la ca hai dpng c d ben trai b i hpng. D i e u nay x a y ra v d i xac sua't ( 0 , 0 5 ) 3/ G p i C la bien CP "spt cam x e p Ipai 3", thi C la bien cp d p i ciia bien co T h e p quy t^c cpng ta CP: P ( B ) = ( 0 , 1 ) ' + ( 0 , 0 5 ) ' = 0 , 0 0 3 5 . (4) A u B vayP(C) = 1 - P ( A u B) (4) D o A , B la hai b i e n CP xung kh^c, nen thep quy t^c cpng, ta CP: Thay ( 4 ) vap ( 3 ) la c6 P(B) = 1 - 0 , 0 0 3 5 = 0 , 9 9 6 5 . P(A u B ) = P(A) + P(B). (5) Nh4n xet: Qua t h i du nay ta thay rp vai trp cua phiTdng phap tinh P ( A ) qua Thay (5) v^o ( 4 ) , ta c6 : P( A ) (siif dung xac sua't ciia bien CP d p i ) . 'FhiduP ( C ) = 1 - P ( A ) - P ( B ) =1-(0,57)'"-Cl„(0.03)(0,97)'%4, (0,03)'(0,97)" 4: M p t v a n dpng v i e n bin sung, b^n ba vien dan. X a c sua't de trung ca ba vien vpng 1 0 la 0 , 0 0 0 8 , xac sua't de 1 v i e n trung vpng 8 la 0 , 1 5 va xac suat Nhan xet: Trong thi du tren ta da suf dung xen ke quy t^c cpng, quy \ic nhan 3e 1 v i e n trung vpng di/di 8 la 0 , 4 . Biet rhng cac Ian bin la doc lap v d i nhau. \ic sua't va quy t^c tinh xac suat cua bien cp'dp'i. Tim xac sua't de v a n dong v i e n dat it nha't 2 8 d i e m . " " *•' '* ' 182 183
  3. Phicng phap giSi Toan trprip tarn - Phan Huy KhSi Cty TNHli M ! V !!VVH Khang Vi?t Giai fhidff ^- nghiem gom 12 cau hoi, moi cau hoi cd 5 phiTOng an jj.^ Idi, nhiTng chi cd 1 phiTcfng an dung. Moi cau tra Wi dung di/dc 4 diem va Goi A la bie'n co "1 vien trung v6ng 10" Khi d6 tCir gia thie't, ta c6: ip5i cau tra Idi sai bi trir di 1 diem. Mot hoc sinh kem lam bai b^ng each chpn 0,0008 = (P(A))^ => P(A) = 0,2. -.(l.)u jj^ hpa mot cau tra Idi. Tim xkc suat de: Goi B la bien cd "1 vien trung v6ng 9" 1/ Hpc sinh dd diTpc 13 diem 21 Hpc sinh do bi diem am. C Ik bie'n cd "1 vien trung vong 8" va D la bien cd "1 vien trung voriy Giai dirdi8".Theogia thiettaco: P(C) = 0,15;P(D) = 0,4. (2). 1/ Goi X la sd cau tra Idi diing, 12 - x la sd cau U-a Idi sai. ^,v, , R6 r^ng A, B, C, D la 4 bien cd doi mot xung kh^c vdi nhau, nen ta c6: E)e dupe 13 diem ta can cd: 4x - (12 - x) = 13 X = 5. l = P ( A u B u C u D ) = P(A) + P(B) + P(C) + P(D) (3) Bai toan trd thanh: Tim x^c sua't de hpc sinh dd cd 5 cau tra Idi dung. Tiir(l),(2),(3)suyraP(B) = l - ( 0 , 2 + 0,15+ 0,4) = 0,25. (4).' 1 4 Goi X Ik bie'n cd "van dong vien dat it nhat 28 diem". De dat it nhat 28 diem thi: Xic sua't de cd cau tra Idi diing la -{yk sai 1^ - ) . Theo quy t^c cpng va - Hoke la 2 vien triing vong 10; 1 vien trung vong 8. Theo quy t^c cong va nhan xdc suat de hpc sinh dddi/dc 13 diem la: P = - - « 0,0532. nhan x^c suat, dieu nay xay ra vdi xkc suat (0,2)^ (0,15). \j J \j J - Hoac la hai vien triing vong 9; 1 vien trung vong 10. Theo quy t^c cong va nhan xac suat, dieu nay xay ra vdi xac sua't C^" (0,25)^ (0,2). 21 Anh ta bi diem am khi ^ Ho5c 1^ hai vien trung vong 10, 1 vien trung vong 9. Ta c6 dieu nay xay ra 12 vdixdcsua't (0,2^(0,25). 4x - (12 - x) < 0 o X < y o X = 0, 1, 2 (do X nguyen). - Hoac ca ba vien trung vong 10 vdi xac suat theo gia thiet 0,008. Gpi A la bie'n cd "tra Idi sai toan bp", '4^ B la bien cd "tra Idi dung 1 cau", C la 2 Theo quy tic cong \kc sua't cua cac bie'n cdxung kh^c, ta c6: P(A)= - «0,0687; P(B) = C|2 ^ - «0,2064; P(C) bie'n cd "tra Idi dung 2 cau". Lap luan nhiTphan 1/ ta cd: =(^2 »0,2835 .5. I5. .5; .5. P(X)= C2(0,2)'(0,15) + C3^(0,25f (0,2) + C32(0,2f (0,25) + 0,008 .5J = 0,018 + 0,0357 + 0,03 + 0,008 = 0,0935. Gpi X la bie'n cd "bi diem am", thi X = A u B u C, trong dd rd rang A, B, Vay van dpng vien bin sung dat it nhat 28 diem vdi xac sua't la 0,0935. C la cac bien cd ddi mot xung kh^c. Theo quy t^c cong xac sua't, ta cd: Nhan xet: Day la mot thi du thuan tuy suT dung quy t^c cong va nhan xkc suat P(X) = P(A) + P(B) + P(C) = 0,5583. Thidu 5: Trong 1 Idp hoc c6 6 bong den, moi bong c6 xac sua't bi chay Ik - . Thi 7: Mot ngiTdi say riTdu biTdc 8 bu-dc. Moi bifdc anh ta tien len phia triTdc Im hoac lui lai phia sau Im vdi xac sua't nhu'nhau. Tim x^c sua't de 4 Ldp hoc du anh skng neu c6 it nhat 4 bong dba sang. Tim xkc sua't de Idp hoc 1/ Anh ta trd lai diem xuat phat. c6 du dnh sang. 2/ Anh ta each diem xuat phat hdn 4m. Giai lai 1/ Anh ta quay lai diem xuat phdt neu nhif trong 8 bi/dc cd 4 biTdc tien, 4 biTdc lui. Goi A, B, C tircfng tfng Ik cac bien cd "ldp cd 6 bdng dfen sdng", "ldp cd 5 bong den s^ng" v^ "ldp c6 4 bdng den sang". Theo quy t^c cpng v^ nhan \kc sua't, xdc sua't xay ra trong triTdng hdp n^y 1^: Moi bdng cd xkc sua't sang la - . Theo quy t^c cpng va nhan xac sua't, ta cd: 70 p=c: / 2 N6 v2y 256 P ( A ) = ^ ;P(B) = C^ f3 • 3 V 1_] ^5 ; P(c)=c^ 2/ Gpi X la sd birdc tien len va 8 - x se m sd bUdc liii. Khoang cdch giffa anh Goi X la bie'n cd "ldp hoc du anh sdng". Ta cd: Say rirpu va diem xuat phat la: Ix - (8 - x)l = I2x - 81 P(X) = P(A) + P(B) + P(C) = 0,8305. f Tirddlheogiathiettacd:l2x-8l>4o .x = 0; 1; 7; 8 (do X nguyen) x
  4. Phuong ph^p giai Toan trgng tarn - Phan Huy Khii Ctv I f j i ' J I M ! V l i V V i i Kli.inij Viet V i the' ap dung cac quy tac cong va nhan xac suat, thi xac suat trong trtfcing hcJpnayla: V(X) = X(x.-E(X)f.P,. i=i ^- viKD • ,\ +C DO l^ch chuan cua X dUdc k y hieu la a ( X ) xac dinh bdi cong thiJc: 128 Nhdn xet: Qua 7 thi du tren cac ban da tha'y ro tinh hieu qua cua phu'cfng p h a p E>e giai cac bai toan trong muc nay, co hai hxidc nhU' sau: sur dung "cac dinh l i vc phep tinh xac sua't" de tim xac suat cua mot bien co BU^c 1: L a p bang phan phdi xac suat ciia dai iu'dng ngau nhien X . Thi dif. 8: (Thi du sit dung cong thiic "CQng suy rQng " BUdc 2: T u y theo dau b a i d o i h o i ma ta tinh cac d a i lUcJng E ( X ) , V ( X ) hoac P(A u B ) = P(A) + P(B) - P(AB). ( j ( X ) theo yeu cau. Chon ngau nhien m o t ve x d so co 5 chiJ so. T i m xdc sua't de so cua ve a y khong CO chi? so 1 hoac khong co chiJ so'5. Xet cac thidu sau: Giai Thi du 1: Gieo ddng thcti hai con xuc sac can doi, ciing chat. G o i X la tdng sd^ chaiti xua't hien tren hai mat cua con xiic sac. L a p bang tinh quy luat phan b d G o i A la bie'n co " v e khong co chi? so 1". Ta co ngay theo dinh nghla ciia x^c suat cOa X va tinh E ( X ) r^jf; , . xac sua't va quy tac nhan xac suat. Giai ;t vjV, P(A) = Dai lil'cfng ngau nhien X nhan gia tri trong tap {2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}. vTo. • Ta can tinh P(X = i) = pi, i = 2 J 2 . _9 Day chinh la cac bai toan tim xac sua't diTa vao dinh nghia cua xac sua't (xem §1). ., G o i B la bie'n c d " v e khong co chu" so 5 " , thi ta cung co: P(B) = vlO; Tir do ta CO bang quy luat phan b d xac suat cua dai lUdng ngau nhien X sau day: K h i do bien c d lich A B la " v c khong cd chQ" so 1 va chu" so 5 " ta de dang X 2 3 4 5 6 7 8 9 10 11 12 tinhdiTcfc: P(AB) = ' 8 V Pi 1 2 3 4 5 6 5 4 3 2 1 10 36 36 36 36 36 36 36 36 36 36 36 D e y rang d day A va B khong phai la hai bien c d (Ban doc ttr tinh toan theo phep giai da trinh bay k ! trong muc §1). •(); • ; xung kha'c, nen theo quy tac "cong m d r o n g " ta co: Vithe': E(X) = XPiXi = 7 . P(A u B ) = P(A) + P(B) - P(A n B) i=i !v.. 5 (9^ Thi du 2: Co hai v a n dong vien b^n cung A va B tap ban. M o i ngifcJi ban hai = 2 {\0j lioj l^n. X a c sua't ban trung hong tarn (10 diem) cua A trong m o i Ian ban la 0,4, con , Chii y : N e u A , B la hai bien c d tuy y , ta co: ciia B la 0,5. Goi X la sd Ian ban trung hong tam cua A trCf di .sd Ian ban trung hong P(A u B) = P(A) + P(B) - P(A n B) tSm c u a B . D i e u nay co m i n h hoa hinh hoc nhu" bicu do Ven d ben 1/ T i m phan b d xac suat cua X, r d i tinh E(X). ,,,^,5 j 2 / T i m phan b d xac sua't cua I X I r o i tinh E ( I X I ) . . . § 3 . DAI L U O N G NGAU NHI^N ROI R A C Giai • X)*i j q Ml.*''" Gia sur X la bien ngau nhien r d i rac vdi tap gia t r i la x , , X2, X3, Xn trong do 1/ R5 rang X nhan cac gia t r i trong tap { - 2 ; - 1 ; 0; 1; 2} nlmll Pi la xac sua't de X nlian cac gia t r i Xj. : P ( X = - 2 ) = p ( A b^n triTdt 2 Ian, B ban trung hong tam 2 Ian). ... i i i ! n = 0,6.0,6.0,5.0,5 = 0,09 - K i vpng cua X di/dc k i hieu la E ( X ) va xac dinh nhiTsau: E ( X ) = ^ P j X j . TiTdng tir cac ban cd the tinh P ( X = - 1 ) , P ( X = 0), P ( X = 1), P ( X = 2) b^ng i=l jphep sur dung phep tinh xac sua't da trinh bay trong muc §2 va ta d i d e n bang PhUdng sai cua X ky hipu la V ( X ) diTdc xdc dinh b^ng cong thtfc: Sn bo' xac sua't cua dai liTdng ngau nhien X nhif sau: '' '' 187
  5. Ctv T N i l f , MTV D W H Khang Vi§t PhLfdng ph^p g\i\ trpng tarn - Phan Huy Khiii X -2 -1 0 1 2 ViP2+P3+P4= 1 ^ P 4 = P(X = 4) = 1 - P 2 - P 3 = l - : ^ - | = : j ^ . Pi 0,09 0,30 0,37 0,2 0,04 V a y ta c6 bang phan bo xac sua't sau day: T i r d 6 E ( X ) = - 2 ( 0 , 0 9 ) - 0 , 3 0 + 0 , 2 + 2.0,04 = - 0 , 2 . r^fctMi cnOi X 2 3 4 , ,i s 2/ D a i li/dng ngau nhien IXI nhan gia t r i trong tap (0; 1; 2 } Pi 1 1 7 Theophan l/tac6: 10 5 10 P(IXI = 0) = P(X = 0) = 0,37 P ( I X I = 1) = P(X = - 1 ) + P ( X = 1) = 0 , 3 0 + 0,2 = 0,5 T i r d 6 : E ( X ) = 2 . - l + 3 . ^ + 4 . 1 = 3,6. P(IXI = 2) = P(X = - 2 ) + P(X = 2) = 0,09 + 0,04 = 0,13 Trung binh can thuT 3,6 Ian (ve y nghia thi/c te' tuTc la giffa 3 va 4 Ian) V i the C O bang phan bo' xdc suat cho d a i lifdng ngau n h i e n 1X1 sau day: I\/h4n xet: 1/ NhiT vay trong cac bai toan ve " d a i liTdng ngau nhien rdi r a c " IXI 0 1 2 thiTc chat la ta phai giai hang loat cac bai toan ve " t i m xac sua't cua mot bien c o " Pi 0,37 0,5 0,13 2/ D e tinh p4 trong t h i du tren ( p „ trong cac thi du dai li/dng ngau nhien rdi Tir do: E(IXI) = 0,5 + 2.0,13 = 0,76. rac nhan n gia t r i X i , X 2 , . . . , x„ v d i cac xac sua't ttfdng iJng p i , p2 Pn), ta chi can Thi du 3: Trong m o t chiee h 6 m c6 5 b6ng den, trong d6 c6 2 bdng to't, 3 boni; tinh P2, P3 r o i dung cong thiJc p 4 = 1 - P2 - PB- >^,, ,, hong. T a chpn ngau nhien tijfng bong ddn de thuT (thur xong khong tra lai) cho (Pn=l-IPi). den k h i thu duTdc 2 b6ng tot. G p i X la so Ian thuf can thiet. 1/ T i m phan bo xac sua't cua dai \\idng ngau nhien X . 3/ Ne'u khong dung chu y tren ban c6 the tinh p4 nhiT sau: 2/ Trung binh can may Ian thil. P 4 = P(X = 4) muon vay phai xet 5 kha nang sau: Giai - Hai Ian dau bong hong, hai Ian sau bong tot. 1/ R6 rang d a i lu'dng ngau nhien X nhan gia tri trong tap {2; 3; 4 } - Hai Ian dau bong hong, Ian thu" ba bong to't, Ian thur tiT bong hong. D e t i m cic gia t r i pi = p ( X = i ) ( i = 2, 3, 4) ta phai g i a i cac bai toan t i m xac - L a n dau bong tot, Ian thur hai bong hong, Ian thi? ba bong hong, Ian thi? tU" suat sau: b6ng tot. + r i m p 2 = P(X = 2) - L a n dau bong hong, lan hai bong tot, lan ba bong hong, lan bon bong tot. M u o n thuf hai Ian chpn difpc hai bong tot, t h i Ian dau phai chpn di/pc bong - L a n dau bong hong, lan thd' hai bong tot, lan thi? ba bong hong, lan thur tu" 2 tot. X d c suat de c6 diTdc dieu n^y la - ; Ian thiJ hai c6n l a i la 4 bong, trong do b6ng hong. 5 , 3 2 3 1 32 2 1 2 3 2 1 3 2 2 1 3 2 2 1 7 Khidotaco: p , = - . - . - . - + - . - . - . - + - . _ ^ ^ c6 1 b6ng tot, vay xic suat de Ian thu" hai cung chon difdc b6ng tot la - . 4 D T nhien each tinh nay ro rang khong can t h i e t ! 2 1 1 Theo quy t^c nhan ta c6: p , = —.— = — . 4/ Chu y : ta chi can thuf toi da den lan thu" tiT thi xac dinh ngay diTdc tinh trang ' 5 4 10 cfla bong thiJ 5, v i the ne'u 4 lan thur trirdc m d i t i m diTdc 1 b6ng tot, thi bong con + Tim p3 = P(X = 3): ki chic chin 1^ bong tot. M u o n vay phai xet hai kha nang: D T nhien neu y e u cau k h ^ t khe, b6ng gpi la bong sing ne'u m ^ t ta phai nhin - Hoac Ih Ian dau lay b6ng hong, hai Ian tiep theo bong tot. tha'y no "sang t h a t " , t h i phai thuf den lan thtf n S m ! ! ! _, , - Hoac la Ian dau lay b6ng tot, Ian 2 bong hong, Ian 3 b6ng tot. BAI TAP T1/GIAI K e t hdp ca vi^c suT dung dinh nghia de tinh xdc sua't, cung nhuf c^c quy ta*-' P^i 1: M o t hop diTng 12 v i e n b i , trong do c6 1 v i e n b i m a u do, 5 v i e n b i mau X u- X ' ' . . X 3 2 1 2 3 1 1 cong va nhan x i c suat ta c6: p, = - . — . - + —.—.- = - . p a n h . L a y ngau n h i e n m o i lan 3 v i e n b i . T i m x^c sua't trong hai trifdng hdp sau: ^' 5 4 3 5 4 3 5 189 188
  6. PhUOng ph&p g\i\ trpng tani i ' i i i n Huy Khiii 1/ La'y diTdc 3 vien hi man do. 2/ Lay difdc it nhat hai vien bi do. pai Trong mot thanh pho, ty le ngu'di thich xem bong da la 65%. Chon ngau phien 12 ngu'di. Tim xac suat dc trong do c6 dung 5 ngu'di thich xem bong da. Dap so: 1/ — 2/ — . Bap so: 0,Q59\. 44 11 Z^aj 2; Cho tam qua can 1kg, 2kg,... 7kg, 8kg. Chon ngau nhien ba qua can. Tun (9^ 5 chi? so 5 va c6 chi? so chan. Dap so": 1 - l l O ; — 5 + (A — xac suift dc tong cong 3 qua can khong qua 9kg. Dap so: —. l5J HUi'fng dan chung: Trong cac bai 7-11 suf dung phiTdng phap diing cac dinh 8 01 i • • nghia ve phep tinh xac sua't de giai. pai 12: Mot nhom c6 10 ngu'di gom 6 nam va 4 ni?. Chon ngau nhien 3 ngu'di. Bai 3: Cho tap hdp E - {0, 1, 2,..., 8, 9}. Lay ngau nhien ra hai phan tuf cua E. (3pi X la so ni? trong nhom. Tim xac suat de hai so' lay ra deu chSn va tong cua chung nho hdn 7. 1/ Lap bang phan phdi cho dai li/dng ngau nhien la X. * '^'^ "' "\ , 4 2/Tim E(X). Dap so: — . 45 Bai 4: Mot khach san c6 6 ph5ng dcfn. Co 10 khach den thue phong, trong do c6 6 1/ X 0 1 2 3 nam va 4 ni?. Ngu'di quan li khach san chon ngau nhien 6 ngu'di. Tim xac suat de: Pi 1 1 3 I 1/ Co 4 khach nam va 2 khach nvl. 21 Co it nhat hai khach niJ. 6 2 10 30 3 37 2/E(X)=l,2. Dap so: 1/ - 2/ — . Bai 13: Trong mot chiec hdm c6 10 lam the, trong do 4 the ghi so 1; 3 the ghi so' 7 42 2; 2 the ghi so 3 va 1 the ghi so 4. Bai 5: Mot doan tau co 3 toa do d siin ga. Co 5 hanh khach Icn tau. Moi hanli Chon ngau nhien 2 tam the va goi X la tong cac so thu dUdc tren hai tam the khach doc lap vdi nhau chon ngau nhien mot toa tau. Tim xac suat de moi toa Tim phan bo' xac sua't cua dai lifdng ngau nhien X. CO it nhat 1 hanh khach len tau. Dap so': — . Dap so: X 2 3 4 5 6 7 81 Pi 6 12 11 10 4 2 45 45 45 45 45 45 ' Bai 6: Mot ngu'di bo ngau nhien bo'n la thiJ' vao bo'n chiec phong bi thu' da dc Bai 14: Mot 16 hang gom 7 san p h a n trong do co 3 phe pham. Chon ngau nhi6n ra 4 san pham da ke ra. Goi X la chinh pham trong 4 san pham lay ra. s3n dia chi. Tim xac suat de it nhat c6 mot la thiT bo diing dia chi. Dap so: ^ . Tim phan bo^ xac sua't cua dai lu'dng ngau nhien X. . ^, Dap Hi/('/ngso:danIfchung: Cac biii tir 1-6 dung djnh nghia cua xac suat de giai. 7: Gieo dong baythdi c63 con xucphan sac. A, BanB,laCngu'di thangquan cupctrong vcti xuat Dap so: X 1 Bai 8: Mot may ba bo con tam khac hien nhau.it Gia nh;1i "2 cac mat boCO phan quan A, luc". Pi 4_ 18 12 sur B, Tim xac u-ng C tiTdng sua't 15%, de trong 30%,5 van 55%chcJi, dienban tichthang may itbay. nhat 3 van. 35 35 35 35 May bay52032 bi rc:>i ne'u hoSc c6 1 vien dan trung vao A, hoac hai vien trung B, 15: Mot ngiTdi c6 mot chiim 7 chia khoa gio'ng het nhau, trong do chi c6 2 hoac ba vien trtlng C. Tim xac sua't de bay bi rdi neu: '^ia la md diTdc cufa. Ngifdi do thur ngau nhien tiTng chiec (thOr xong bo ra ngoai) 1/ May bay bi trung 2 vien dan. 2/ May bay bi trung 3 vien dan. * o den khi tim du'dc chiec met du-dc cufa. Goi X la so' Ian thiif. Tim phan bo' xac Dap so: 1/ 0,3675 2/ 0,72775. ^'iSt cua dai liTdng ngau nhien X. Bai 9: Hai cau thu bong da sul phat den, moi ngu'di da 1 Ian vdi xac suat Ian; Dap so: X 1 2 3 4 5 ban tiTdng iJng la 0,8 va 0,7. Tim xac suat de it nhat i cau thu lam ban. Pi 12 10 8 6 6 Dap so: 0,94. 42 42 42 42 42 < 191
  7. Bai giang so 10: NH| THUC NEWTDN d^ 1: (De thi tuyen sinh Dai hoc khoi B - 2007) T i m he so^ cua x ' " trong khai trien nhi thffc (2+x)" bie't r k n g : , ^ Cac bai loan to hOp noi chung va nhi thuTc N e w t o n n o i rieng la mot trong cat- 3"C|J-3""'ci+3""^C^-3""-^C-^+... + ( - l ) " c ; j = 2 0 4 8 . cau thanh cua cac de thi m o n Todn trong cac k i thi tuyen sinh vao D a i hoc, Cao dang nhffng nam gan day tff 2002 - 2009. Giai A p dung cong thffc khai trien nhj thffc N e w t o n : * ' '( ' B a i giang nay danh de trinh bay cac phffcfng phap giai cac b a i toin l i e n quaii den nhi thffc N e w t o n . Co hai loai bai toan chlnh dffcfc x e t de'n d day: ,n ^3-1)" = ic!;3^(-ir^ = 3"C': -3"-'c|, ^3^-'cl -3"-^C^„ +... + (-1)"Cj;. - Cac bai toan l i e n quan de'n he so' trong khai trien nhi thffc N e w t o n . k=() - i Cac bai toan tinh tdng c6 sff dung de'n nhj thffc N e w t o n . V i the, tff gia thie't ta co: 2" = 2048 = 2 " => n = 11. ' L a i ap dung cong thffc khai trien nhi thffc N e w t o n ta c6: ;*i , § 1 . CAC BAI TOAN VE HE SO TRONG KHAI TRIEN NHj THUC NEWTON (2 + x ) " =XC^2^"-^ (1) Nhff da biet nhi thffc N e w t o n c6 dang: (a + b ) " = ^c;;a"-^b'' . (1) k=() *:.» k - k=() Trong do v e p h a i cua (1) la tdng n+1 so hang. So C[;a""''b'' Ih so hang thij Tff (1) suy ra he so cua x ' " ffng v d i k = 1, va do ^ so : C { , 2 ' = 2 2 . k + 1 cua tdng a y , ( k = 0, 1, 2,..., n). Cac bai toan thuoc chu de nay la m o t dang Nhan xet: T h i d u tren \k m o t minh hoa day du cho phffdng phdp g i a i ma toan hay gap trong cac k i thi tuyen sinh vao cac trff5ng D a i hoc, Cao dang trong chdng ta da trinh bay trong phan mcf dau. nhffng nam gan day. N o thffdng c6 dang sau: " T i m dieu k i e n de he so cua khai Thi di^ 2: (De thi tuyen sinh Dgi hgc khoi A - 2006) trien (1) thoa m a n mot dieu k i e n nao d a y " . T i m he sd^ cua so hang x^* trong khai trien nhi thffc N e w t o n cua •+ X Phffcfng phap g i a i cac bai toan nay thffdng dffdc tie'n hanh nhff sau: - V i e t khai trien N e w t o n (1) v d i a, b dffdc chon tff dau b a i . Trong mot so Bie't rkng C ^ i + c L , + - + C5„., =22"-1. trffdng hdp c6 the phai xac dinh so n trffdc (thffdng n la n g h i $ m cua m o t phffdng Giai trinh CO l i e n quan de'n sd^ td hdp). Trffdc he't xac djnh n tff gia thie't da cho nhff sau: - Tff (1) sff dung so hang thff k + 1 : c[^a""''b'' cua khai trien va y e u cau de bai Theo tinh chat cua so td hcJp, ta c6: de thie't lap nen m o t phffdng trmh (ma an cua n6 thffdng 1^ k ) . ^2n+l -*-2n+l - Tff nghiem t i m dffdc se cho ta ket qua can t i m . '-2n+l -*-2n+l Trong qua trinh giai todn ta thffdng dilng cAc ket qua dSc biet sau: -3 (1 + x ) " X C„V = C ^ C U + C^x^ +... + C > " . *^2n+l - ' - 2 n+l ' k=0 •,2n-l -.n+l Tff do t a c o : C2n+i + C 2n+l +--'"'"'-2n+l - ' - 2 n + l +*-2n+l + ••• + *-2n+l (1) ^ (1 - x ) " - i ( - 1 ) ' C y = Cl - CJ.X + C^x^ - . . . + ( - 1 ) " C > " . Tff(1) taco: k=0 ^2n+l +(C2n+l +C2n+] "*"••• +^"n+i ) +(CjJJ+i +C2n+1 + ••• + C j n l , ) +•,2n+l CjJ 2n+l Dac biet hdn, ta c 6 : C ° + c[, + C^ + . . . + C" - 2 " ; = 2+ 2(C^„,+CL,+... +CL,) „ri,,,,. (2) c°-cUc^...+(-i)"c;;=o Cac dang toan cdban: V i v e t r ^ i c u a (2) bhng 2, nen tff (2) va gia thie't ta c6: if . ^ Lo^i 1: T i m h? so cua x'' trong mpt khai trien nhi thffc N e w t o n : 2^"^' = 2 + 2 ( 2 2 " - l ) = 22' o n=10. !! V''' ' ' 193
  8. TTiumg pnap aiat I'QgTi TrpngTam - nnan Huy i^nar Theo cong thiJc khai trien nhi thufc Newton ta c6: . ^ 60-lIk „ TCr phu'Ong trinh = 8: k = 4. ,(x-'.x')"' = fcr.,(.-f(x')"»=ict„x k „ 7 0 - 1 Ik Vay so hang chiJa x" trong k h a i trien tu'cJng iJng \di k = 4, do do he so cua no k=() k=0 Ta c6 70 - 1 I k = 26 = > k = 4. V a y so h a n g chuTa x^*^ lirng v d i k = 4. iaCf2 =495. Tir d6 s u y ra h ? so c u a x^"" la C/,, = 210 . l^han xet: V 6 i cac thi du 1, 2, 3, 4 vi^c tinh h? so cua c^c so hang chuTa x'' du'dc tinh tnrc tiep. v. ^ hihan xet: M o t Ian niJa ta thafy c a c bifdc g i a i c u a cac loai t o a n t r o n g m u c nav Trong cac thi du sau day, viec tinh h? so' cua so hang x'' khong tinh diTdc trifc t u a n t h e o phU"dng p h a p da t r i n h b a y t r o n g p h a n m 5 dau. ti^'p ma no phai qua budc trung gian. Ta hay xet cic thi du do: , v,,, , . Thi du 3 (De thi tuyen sink Dai hgc khoi D - 2004) fhidii 5: (De thi tuyen sinh Dgi hgc khoi D - 2007) ^ 1 T i m cac so' hang khong chtfa x trong khai trien , v d i x > 0. T i m he so cua x^ trong khai trien cua bieu thtfc: P = x ( l - 2x)^ + x^ ( l + 3 x ) " ' 7 k 7-k Theo cong thtfc k h a i t r i ^ n nhi thtfc Newton, ta c6: 7 f 1 zi^ 5 , 10 , Tac6: x3 + X 4 X3 x"4 \ k=() P = xXC3^(-2x)^x^Xcfo(3xf. (1) k=0 k=0 k+lilZ 7 7k-21 Tir (1) suy ra so hang chifa x^ cua P 1^: k=0 k=0 xC\ + x^Cfo (3x)^ = x^ ( l 6 C ^ + 27C^o) • X 6 t phifdng trinh 7k - 21 = 0 o k = 3. Vay he so cua x^ trong khai t r i e n la 16.5 + 27.120 = 3320. V a y so hang khong chiJa x la so hang ufng v d i k = 3. D o la so = 35 . Thidu 6 (De thi tuyen sinh Dqi hgc khoi A - 2004) Chii y: D e thi tuyen sinh Cao dang k h o i A , B - 2008 c6 dang tiTcfng tiT: T i m he so'cua x" trong khai trien thanh da thtfc cua b i e u thtfc: T i m so' hang khong chiJa x trong khai trien 2x + 1 1 . D a p so: 6528. P- l + x2(l-x) Oi.( lit., Giai Thi du 4: (Be thi D(ii hQc khoi A - 2003) Theo cong thuTc khai trien N e w t o n ta c6: f 1 I — ,-|k p=ics ill":- x^(i-x) -j:^wH^-^f T i m he so cua s6 hang chtfa x" trong khai trien nhi thiJc N e w t o n — + vx^ k=0 k=0 + V d i k = 5, 6, 7, 8 t h i x ^ ' ' ( l - x ) ' ' chu-a l u y thuTa bac thap nhat Ih 2k > 10, vay bie'trkng: qtl^-^,3 = 7 ( n + 3). Giai "^oi so hang cua no khong c6 so hang nao chiJa l u y thiifa 8 ciia x. Trirdc het ta t i m n ttf h? thiJc: + V d i k = 0, 1, 2 t h i x ^ ' ' ( l - x ) ' ' chiJa l u y thijTa bac cao nhat la 3k < 6, vay m p i so ^^ng cua no khong c6 so hang nao chiJa l u y thufa 8 cua x. C;;:!i-C;;,3 = 7 ( n + 3) « C - > + ^ 3 - ^ 3 =7(n4-3) o ^ ^ = l{n^3) V$y chi x6t khi k = 3, k = 4. « ( n + 2 ) ( n + 3) = 1 4 ( n + 3) (n + 2) = 1 4 o n = 12 (do n + 3 > 0) • V 6 i k = 3,xetsohang C^x^(l-x3) = C^x^(l-3x + 3 x 2 - x ^ ) . Theo cong thtfc khai trien nhi thiJc N e w t o n ta c6: S6' hang chu-a x ' d day la 3 C ^ x ' . ^ . 5 12 60-1 I k ( M V(3i k = 4 x e t so hang: Q ' x ' ( l - x ' ) . So hang chtfa x" la: C^x*. - r + VX^ X-^+x2 X2 ^ICf^X 2 W J k=() k=0 Vay he so chu-a l u y thuTa x" trong khai trien cua P Ik: 3C^C^ = 238 . 195 mt
  9. f'lii/uny p l u i t ) n'^'n t r o n q l.irn Chan H u y K h 4 i T i r d d do P(x) = (1 + 2 x ) " = a „ + a,x + a2X^+...+ a„x", ta c6: Tht dii 7: Cho da thtfc P(x) = (1 + x ) + 2(1 + x ) ' + 3(1 + x ) ' + ... + 20(1 + x ) T i m h$ so' cua so' hang x " Irong khai t h e n thanh da thv?c cua P(x). a„=c'„'; a , = 2 C • = > ^ = C l ; a , = 2 C ^ = . ^ = C ^ a „ = 2 " C ^ = . ^ = C^ Giai Vieatlaii: P ( x ) = ( l + x ) + 2(1+ x f + . . . . +14(1 + x ) 14 VIth^:a„H-^+^H-...+^=c«H-c^c^...+c;;=2-. J'si-'ii ••• i • • ( 15 ( 16 ^ ( 20 A D o dd tir gia thiet suy ra: 2" =2*^ = > n = 1 2 . J oj , +15 ZC^x" + 16 Icf.x^ + ... + 20 Zc,\,x^ (1) U=o > U=o J X a k h a i trie'n: (l + 2 x ) " ^ Y Cf22''x'^ . T i f d d a, = C , \ 2 ^ ( k = 0. 1 12) Tir do suy ra he so ciia so hang chiJa x " 1^ k=0 a,5 = 15C{^ + 16CJ^ + 17C|^ + 18Cl^ + 19CJ^ + 20C^f, = 400995. X ^ t bat phiTdng trinh: ak a n . lc=0 k=() Vay a , - 3 ' ' 2 ' - ' ' C , ' ( k = 0, 1,2 9). L u c nay cd duy nha't h0 so a^,, nhan gia t r i Idn nha't. Xet bat phiTdng trinh: ak " . T i r d d : a 5 = a 6 = m a x { a o ; a i ; . . . ; a 9 } =2C9 = 2 5 2 . ( 19l 196
  10. Thidu 3: X 6 t khai trien (x+2)"= a» + ajX + ajX^H-... + a„x". Theo b ^ i ra ta c6 phiTcfng trinh: T i m n de max{a();ai;...a„} = aio- 4n(n-l)(n-2)^^^,^^^^ ^ n = 5 (do n > 3). ' ' Giai V a y n = 5 la gid trj duy nha't can tim cua n. • Tir gia thiet ao< ai a: i > a ^ > . - >an. a,„>a9 (1) fhidii 2: T i m cac so hang nguyen trong khai trien (V3 + ^ / 2 ) ^ , ) , • Vaytac6he: \ i MJ,dL ' : aio >a,, (2) Giai ^ ,^ ^ Theo cong thufc khai trien nhi thtfc N e w t o n , ta c6: ' f1j r Theo khai trien nhi thrfc N e w t o n , thi (x + 2)" = ^ Cj^x'' 2 " " " 9 k 9-k k=0 32 +23 -XC5322 3 3MUHDt (1) k=0 V a y a^ =c!;2"~'' v d i k = 0, l , 2 , . . . , n Tiyd6(l),(2) k 9-k 2n! So'hang C p 2 2 3 la nguyen (9-k);3 « k = 0 v a k = 6. n! 2 (n-10)!10! (n-9)!9! lO^n-9 0 3 , t i i r ( l ) ( 2 ) s u y r a : Ta c6: ( l + x ) " = ^ ^ " X ' ' => so cua hai so hang l i e n tiep l a : ^C^"-^ • a3„.3=C:(2-^Cr^) + C r ' ( 2 q - ' ) .2-^^-J|_ + 2n^ k=() 198, ^ *
  11. Cty TNiiH MTV D W H Khang V i j t 7 k+1 7 , _ k+ 1 Tit (3) ta c6: Tac6: — r \ — = — 7n = 22k + 15 n = 3k + 2 + 2n+l C' n^ ' 15 n - k 15 ' M + x) - ( 1 - x ) ^ ^ ^ 1 o^^r' ^_2^"-l Jf(x)dx=C^ji ,(i-x) .(5) D o n , k e Z => ^ ^ = t ^ k = 7 t - l n=22t-] (1) 2 2 2n + l 2n + l 2n + l 0 Do k 6 0 nen 7t-1 > 0 => t > y • " (2) TCr (4) lai c6: Jf (x)dx = C[„ Jxdx + C^„ Jx'Mx +... + C ^ ^ ' jx^""'dx 0 0 0 0 TCf (1) (2) do t nguyen nen n nhan gid tri b6 nhaft bhng 21 khi t = 1. 1 ^2n-l 1 Vay n = 21 la gia iri be nhaft cua n thoa man yeu cau dau bai. (6) 5 TCf (5) (6) => dpcm. §2. CAC BAI TOAN CHUNG MINH H$ THLTC TO HOP, HOAC TINH Thidu 2: (De thi tuyen siiih D f (x) = C L . , + 2 C L „ x + 3 C L . , x ' +... + {2n + l)C^:;:lx^". (2) - Lay dao ham (hoSc tich phan) trifc tiep ham so da cho. Dong thcfi thay x= - 2 vao (1) va (2) ta c6: - Lay dao ham (ho5c tich phan) sau khi da suf dung khai trien nhi thiJc Newton 2n + l = C U -2.2CL. +3.2^CL„ - 4 . 2 ^ C ^ „ „ + ... + (2n +l)22"C^;;:l (3) ham so f(x) da chpn (dl nhien d day f(x) c6 dang c6 the dilng cong thiJc khai Tiifgiathie'tva(3)suyra2n+1 =2005 o n = 1002. trien nhi thifc Newton) Thi du 3: (De thi tuyen sink Dai ht^c khoi B - 2003) - Vdi phep lay dao ham, ta li/a chpn mot gia tri phu hpp cho x, roi thay vai) Cho n la so nguyen diTPng. Tinh tong: hai bieu thiJc va tinh dao ham. Vdi phep lay tich phan thi chpn hai can tich phan 2"*'-l thich hpp. Cac gia trj nay cung thu'dng thay ngay tiT dau bai. s=ci:+^cu—c^+...+ Thidu 1 (De thi tuyeii sink D
  12. PhiiOng ph^p g i i i Join t r p n g t a m - Phan Huy KhSi Thidii 4: Cho n la so nguyen diTOng. Chtfng minh r^ng C ' 2 ' „ - 2 C ^ „ + 3 C L - 4 C L + . . . + (2n + l ) C i ; ; = 0 . X^thamso f ( x ) = x ( l + x)^". , f(x) = (l + xf"+2nx(l + x)'"-' iy (1) T X6l ham so f(x) = (1+x)^". Giai Ta CO theo cong thufc khai trien nhi thiJc Newton f(x) = C'2'„+Ci„x + cLx^+cLx^+... + C L " A 2 " - U C 2 V " . Tirdo ta c6: Ciy ivuv D W H ^, ^ Khang V i j t j f (1) = 2^" = + Ci„ + Cl„ + +... + CL"-' + Cj: (2) Theo cong ihufc khai trien nhj thtfc Newton, ta c6: i'u f ( - l ) = 0 = C^'„ -C\„ + C L -C^„ + +Cl: (3) f ( x ) = x(c5„+C^„x + cLx2+... + C^:x^") T r i l f t i r n g v e ( l ) c h o ( 2 ) t a d i d e n 22"-2(c^„+Ci„+... + C^;;-') (3) - =C^^„x + Ci„x^+cLx^+... + C ^ ^ ^ - ' ^V{x) = C«„ + 2 x C L + Sx^cL +... + (2n + OC^^. (2) Tit (3) va gia thiet suy ra 2^"-' = 2048 = 2 " ^ n = 6. ,'„nn>ri - Chii y: Mot de thi de hdn cung loai tren (De thi tuyen sinh Dai hoc khoi D - Dong thdi thay x = - 1 vao (1) va (2) suy ra 2002) c6 dang: C 5 „ - 2 C ^ „ + 3 C L - 4 C L + . . . + (2n + l)C^;: =0 dpcm. Tim n de c6 h$ thtfc: C° + 2C[ + 2^Q\. + 2"C;j = 243. Thidv 5: X6t f(x) = (1+x)" = ci: + cU+c^x^ + cy 1/Tinh Jx^(l + x'')"dx. =^f(2) = 3"=C||+2C;,+2^0^+... + 2"C;;-243 = 2^ n = 5. 0 1 1 1 1 2""*^' — 1 Thidu 2: Khai trien (1 + x + x^+ x')^ thanh da thtfc ao+ a|X + a2X^+ ... + al5x'^ 2/Ch.ng mi„h: .-C\ ^-^^^Cl = — . Tinh ao + ai + aa +... + ai5. Giai Giai Datf(x) = (l +x + x^+xV=a()+aiX + a2X^ + ...+ a i 5 x ' ' 1/Tac6: x ^ ( U x 3 ) " d x = i j ( U x ^ r d ( l + x^) = ^ — ( 1 ) => f(l) = a o + a i + a2 + ...+ a,5 = 4'= 1024. Thi du 3: (De thi tuyen sinh Cao dang khoi A, B - 2005) 2/ Ap dung khai trien nhi thufc Newton ta c6: Ch^ng minh r^ng vdi mpi n nguyen du'cJng, ta c6: (i+x^)" =c'„' +c|,x^+c^x^+cy+...+cy^ => x^ ( i + x ^ ) " ^ cy + c^x^+c2„x«+c^x"+...+cy^^' X6tf(x) = (1 + x)" =d^+c[K+cy+...+cy. => Jx^ (1 + 3)" dx = C*' ]x'dx + Cj, Jx^dx + jx«dx +... + CH Jx3"^^dx 0 ( ) ( ) ( ) 0 , Ta c6: f (x) = (l + x f = + C ^ x + Cjy +... + (C^y) + + C^>2" (D py =ic'>lcl+ic^+... + - I - C ^ (2) Matkhac f2(x) = (l + x)"(l + x)'' 3 " 6 " 9 " 3n + 3 " T i r ( l ) ( 2 ) suy ra dpcm. Nhan xet: IP*' ={c^l+c\x+cy+...+cy)[c^l+c],K+cy+...+cy) (2) Neu bai ra chi c6 phan 21 thi ta phai tiT chon ham so: f(x) = x^(l + x')". He so cua x" d ve phai cua (1) \k q„. NhU'ng dieu nay c6 the hdi kh6, vi vay phan 1/1^ sir gdi y cho phan 21. H$ so cua x" d ve' phai cua (2) (di/a v^o ph6p nhan hai da thufc) 1^: ^ Lo^i 2: Cac bai todn suf dung ket hdp vdi cac bien ddi dai so Thidu 1: (De thi tuyen siiih Dgi hgc khoi D - 2008) I c^c: +ciq-' +c^cr^+...+cr'cl +c;;c^ =(ci:)%(cl)%...+(c:f. Tim n nguyen dirdng de c6 h$ thtfc sau: + Cjn +... + Cjn"' = 2048. TCr d6 suy ra dpcm. . ,vf A K i 203 202 •
  13. Cty TWHH MTV DWHKhang Vi$t ( 1 23 pai 6: Tim h$ s o cua x^ trong khai trien thanh da thtfc cua (2-3x)^", biet tong c i c he so' cua c a i Cin.i + C L . i + - + Cj:t\ 1024. Dap so': -Cly2\?P . Thi du 4: ChuTng minh rkng trong khai trien x + — luy thiifa bac nguyen diTOng cua x la so chinh phiTOng. pili 7: Chtfng minh ring: 198 Sh vjfefi .-.*! • - Giai 100C?oo - l o i c !100 + ...-199C 99 = 0. 2) 100 Theo cong thiJc khai trien Newton, ta c6:k ^ 2 k - 2 3 / 1, N 2 3 2 3 / 1 N23-k 2 3 23X Hudn}- dan: Ap dung khai trien nhi thufc Newton vdi (x^+x)'"*'. X + — X k=() k=() Bai 8: Tim so hang Idn nha't trong khai trien (1 + 0,2)'""". Dap so: C{^^o5"'^^ , X6t bat phi/cfng trinh: 2k - 23> 0 k>Y o 23 k = 12, 13,..., 23 (do /2 \ Bai 9: Tong cic he so cua khai trien —+ x la 1024. k nguyen difcfng). Tim he so cua x'* trong khai trien do. Dap so: 210. Vay c a c IQy thifa bac nguyen di/cJng cua x iJng vdi k = 12, 13,..., 23. Do do tong cdc h e so luy thifa bac nguyen diTdng cua x la: ^- Bai 10: Tim h$ so cua so hang chiJa x^ trong khai trien x + - . Dap so: 1365 C^^+C^^ + ... + C^^ (1) / 1 Nn - k Ap dung cong thuTc c\ C^"^, ta c6: C'j.-, = C^^;CL, = C^^...;C^.!, = C^^ Bai 11: Xet khai trien: k=0 Vi the': C'2'3 + C^3 + +... + C^^ = 2(0^^3 + C^'3 +... + C^^) (2) Biet r^ng ti so cua so hang thuf 7 ke lit so hang dau, vdi so hang thuT 7 tinh tu" X6t f(x) = (1 + x ) " - C'2'3 + C^3X +... + Ci^x" =:> f (1) = 1^^ dirdi len bang 6. Tim n. Dap so: 9. Tird6lhay vao(2)tac6: Bai 12: Cho n la so nguyen di/dng. ChuTng minh: 1+^d„ +^C^ +...+—-^^JJ = 2"*'-l ^ 2 " = 2(C1^ + Cj^ +... + Cfj^) Cl^ +... + Cfl = 2 " = (2- • ) ' ^ dpcm. 1 . ' BklTlPTljGlAl Huc'mfi dan: Tinh ff (x) theo hai each d day f(x) = (1 + x)". _2K Bai 1: Tim so hang khong chufa x trong khai trien nhi thiJc: I X ^ + x"25 Bai 13: 1/ Tinh tich phan Jx(l - x)" dx. Dap so: 729. 2/Chtfngminh: -C'„'-lc|, +-!-C^ -ic^ +... + LJLC"^ = — Bai 2: Biet r^ng tong tat ca cdc he so cua khai trien nhi thtfc (x^+1)" bhng 1024 2 " 4 " 6 " 8 " 2n + 2 " 2n + 2 Tim he so cua so hang chuTa x'^ trong khai trien tren. Dap so: 210. Bai 14: Cho n la so nguyen diTdng. ChiJng minh Bai 3: Goi ai, a:,., ai i 1^ he so trong khai trien 1/ C|, + 2 C 2 +3C^ + ... + ( n - l ) C ^ ' +nC;; =n.2"-'. (x +1)'" (x + 2) = x " + a|x'" + a 2 X ^ +... + a,(,x + a, j . Tim he so cua a.,. Dap so: 672. 2/ 2.1C^ + 3.2C^ + 4.3C^ +... + n(n-l)c;; = n(n-1)2"-^. i Bai 4: Gia suT (1 + x + x^ + x^)' c6 khai trien thknh da thiJc: ' Hu('mg dan: a()+ aix + a2X^ + . . . + a l 5 x ' ^ Tinh ao- ai + a 2 - +... - ais. Dcip so: 0. a3 1/ Tinh f (x) theo hai cdch vdi f(x) = (1 + x)". Bai 5: Trong khai trien (V3 -^/5]'^^ c6 bao nhieu so hang la so nguyen? 2/ Ti'nh f"(x) theo hai each vdi ('(x) = (1 + x)". Dap so: 32. •>s3||^ 205
  14. Phiwrig pha|] g i i i h i a n trpng tam - Phan Huy KhSi Cty T M H H M I V D W H Khang Vi§t Bai giang so 11: CAC B A I TDAN fitidu 3: Cho k, n l i cac so' nguyen va 4 < k < n. Chiang minh: 5d Td H Q P CHINH HQP V A PHEP O^M c!: + 4c!:-' + c!;-2 + Ac\-'+= c'' n+4 • •:HV: Giai Bai giang nay de cap den cdc loai todn sau day cua chu de n^y: ' - Giai phu'dng trinh lien quan den so to hdp, chinh hdp. Ap dung tinh chaft cua so to hdp, ta c6: k pk-i - Chtfng minh cic he thuTc to hdp (khong sijf dung cong thuTc khai trien cua n+3 +'-n+3 nhi thtfc Newton). =(c!;.,+c„M)+(cL1+cL1) - Cdc b^i todn ve phep dem. 1 !• > • § 1 . CHUNG MINH CAC He THUC TO HOP =(c„^, + c„^-l)+2(cL-i+ci-])+(cL-?. CL1) Phifdng phap giai nay diTa trifc tiep vao cac cong thufc tinh cac so to hdp Cjj, so = ( c ^ C r ' ) + 3(c^Uc„^) + 3(cr+Cr) + ( c r + C „ ^ - ) chinh hdp vk so hoan vi P„. Hai cong thtfc rat hay su* dung trong muc nay la: =cj;+4cj;-'+6c^2+4c!:-^+c|;-^ dpcm. ci=c:-' c!:„=c^c|;-'. Thidu 4: ChiJng minh rkng vdi moi so' nguyen n > 1, ta c6: Xet cac thi du minh hpa sau day: ' C"n _ p i TMdu 1: (De thi tuyen sink Dqi hgc khoi B - 2008) Ci +2-^^ + 3 + ... + n- n-1 Cho n nguyen dUdng va k nguyen (0 < k < n). c' ^n ^n+l Giai 1 1 _1_ Chiang minh he thufc sau: '^^^ V d i k = 1,2 nta c6: n + 2 >n+l ^-n+l / Cj; ^^n!(n + l - k ) ! ( k - l ) ! _ ( k - l ) ! k ( n - k ) ! ( n + l - k ) _ = n - k + l .J Giai -k-l (n-k)!k!n! (n-k)!k! k+1 , -^k n+1 n+1 n+1 +C '^'-n+l Ta c6: Tuf do suy ra: n +2 pk pk+l n + 2- CLCI^"' C ^ 2 ^ ^ 3 ^ + ... + n ; ^ = n + ( n - l ) + ( n - 2 ) + ... + l = i ^ = C^,, n +1 Cj;:^ ^ n + 1 (n + 2)! k!(n + l - k ) ! ( n - k ) ! ^n n + 2'c!;+iC;;:{ n + 2'(k + l)!(n + l - k ) ! (n + l)!(n + l)! dpcm. in ^ (n + l)(n + l)!(n + 2)k!(n-k)! k!(n-k)! ^ _ l _ ^ Thidu 5: Cho n > 2 la so nguyen, chtfng minh rkng: (n + 2)(n + l)!n!(n + l) n! P„ = l + P,+2P,+3P3+... + (n-l)P„_,, Thi du 2: (De thi tuyen sinh Dai hgc Hiing VUctitg - 2006) O day Pk la so hodn vi cija k phan tuf, k = 1, 2,..., n. Chufng minh vdi moi so i\i nhien n > 2, ta c6: Giai 1 1 1 1 n-1 - + ... + - Ta c6: P^- Pk+, = k! - (k-l)!= ( k - l ) ! k - (k-1)! = (k-1) (k-l)!= (k-l)Pk., (D BiU:.:^' ^ 2 ^ 3 n P2-P.=Pl Giai Ap dung lien tiep (1) ta c6: P3-P2=2P2 ^ ^ 1 1 1 1 0! 1! 2! (n-2)! Tac6: - ^ + — + — ^ + ... + — ^ = — + — + — + ... + - Pn-Pn-l-(n-l)Pn-l A\ 2! 3! 4! n! Cong tifng ve cdc ding thtfc tren, ta c6: P„ - P, = Pj + 2P2 +... + (n - l)Pn_i • inn 1 1 1 1 J DoP, = 1 => P„ =1 + P,+2P2+3P3+... + (n-l)P„_, => dpcm. 1.2• + 2.3 + 3.4 + ... + (• n - l ) n Nhqn xet: Ta c6 the chufng minh he thtfc tren bkng phiTdng phap quy nap , 1 1 1 1 1 1 1 , 1 n-I = 1— + + + ... + =1 — = =i> dpcm. '04n hoc. Xin d^nh cdch giai d6 cho ban doc. 2 2 3^ 3 4 n-1 n n n 207 206
  15. FHiKony phap qiii loAn trgng tam - Phan Huy KhSi §2. G I A I P H U O N G T R I N H L I ^ N Q U A N O ^ N S 6 T 6 H O P , S 6 C H I N H HOP Giai 1/ So tap hdp con c6 4 phan t ^ cua A la C n c6n so tap hdp con c6 2 phan tuf V d i cdc phi/dng trinh, bat phiTdng trinh thupc loai nay, each g i a i tie'n hanh nhtf sau: c i a A la . T h e o bai ra ta c6 phtfdng trinh: - Dat dieu k i e n de phiTdng trinh, baft phifdng trinh c6 nghia. X i n l i m y dc n! n! C^=20C^« = 20- o n^-5n-234 = 0 AI , C n C O nghTa ta can c6: n > 0, n > k > 0, n, k la cac so nguyen. (n-4)!4! (n-2)!2! - Sijr dung cac cong thdrc ve so to hdp, so chinh hdp, so hoan v i difa phiTdng "n = 18 (n = - 1 3 loai do n > 4. trinh da cho ve cac phifdng trinh dai so. n--13 - N g h i e m t i m difdc phai doi chieu v d i cac dieu kien dat ra ban dau (dac V a y tap hdp A c6 18 phan tuf. biet chu y den tinh nguyen cua nghiem), de loai bo di cac nghiem ngoai l a i . 2/ So tap hdp con c6 k phan tuf cua tap hdp A c6 18 phan tiJf la Ci'^g Thidu 1: (De tin tuyen sink Dai ItQC khoi D - 2005) .k . ^ k + i 18! 18! X e t bat phiTdng t n n h : C,x < C,V Bic't rkng so n nguyen du'dng thoa man he Ihtfc (l8-k)!k! (l7-k)!(k + l)! • CL,+2C^,2+2C^,3+C^,4 = 149. 1 —^k+l d dang ban dau trong dau bai khong noi gi 1/ T i m n. ^e'n viec g i a i phiTdng trinh ho&c baft phUdng trinh lien quan den so to hdp, so 21 T i m k e ( 1 , 2 , . . . . n) sao cho so lap hdp con gom k phan tuf cua tap hdp A chinh hdp... nhiTng thiTc chaft cua bai todn l a i chinh la dieu a'y. I I Idn nhat. 209 208 • ¥. • '.r- •
  16. Cty TMHfl MIV HWH Khang Vi?! D\X6i day ta se xet cac thi du mh trong d6 ngay tiir dau da yeu cau giai fliidu 6: Cho tap hdp A gom n phan tuf, n > 4. Tim n bie't ring trong so' cac tap phiTdng trinh (hoSc bat phi/dng trinh) hen quan den so' to hdp, chinh hdp. gon cua A c6 dung 16n tap con c6 so' phan tuf li le. -i , i Thidu 4: {Be thi tuyen sinh Cao dang SUph^m TP Ho Chi Minh - 2005) Giai Tim tat ca cdc so tiT nhien x, y sac cho: A*j"' : A^^,, : C^^_, = 21:60:10. (1) C|,,C-n,C^,...,lan lUdt la so cac tap hdp con cua A c6 1, 3, 5... phan tu'. ;:: Taco: +e„+... = 2"-'. (1) y>l (Dchu-ng minh nhirsau: (l + x)" =C[|+Cj,x + C^x^ +... + C > " , 111 y>l Dieu kien de (1) c6 nghiem la x - y >1 x>y+ 1 (2) ( 1 - x ) " =C||-C;,x + C^x2-... + ( - l ) " C > " . - Mon y-l>0 x,y 6 Z x,y e Z Tirdosuyra: (l + x ) " - ( l - x ) " = 2 ( c I , x + C^x^+...) (2) A^x-i 60 yic^x-i Trong (2) cho x = l,ta c6: 2" =2(cJ,+C-^+....) (l)dung. - r Ta c6: • =10— = 6 o y ! = 3! o y = 3 Theo bai ra ta co phifdng trinh: 2"'' = 16n 2""^ = n (3) 21 Rorangn = 5kh6ngth6aman(3). Vay taxet(3) v d i n > 6 . , Thay lai v^o (1) ta c6: •- — o Xet ham so f(x) = 2 " ' ' - x vdi x > 6 " " A^x-i 60 A^,_, 20 ( x - 2 ) ! ( x - l ) ! 20 f (x) = 2''-*ln2 - 1 > 21n2 - 1 > 0 vdi x > 6 ^ =7 ^ Vay f(x) la ham dong bien khi x > 6, lai co f(8) = 0, vay suy ra (3) co nghiem =—o7x^-55x+42 = 0 o 6 (x = - loai do x > 4, X e Z ; (x-3)(x-2) 20 X =- 7 duy nha't n = 8. Do do n = 8 la nghiem duy nha't cua bai loan. ' 7 Nhqn xet chung: Vay x = 7, y = 3 la cap so" duy nhat thoa man yeu cau de bai: Trong bai toan tren ta da suT dung tdng hdp cac kie'n thiJc sau: Nhgn xet: TUdng tif bai tren, trong de thi tuyen sinh vao "Cao dang Cony, - Nhi thtfc Newton. nghi$p Ha Noi -2004" c6 dang: - Cng dung tinh dong bien ciaa ham so de nh^m muc dich giai phu'dng trinh: 2A'' + SC" = 90 C l + C - > C ^ + . . . = 16n. Giai he: ^ ^ . Ta CO ngay A". = 20, C ' =10 x = 2; y = 5. 5At-2C'=80 Ta CO the noi rang giai phu'dng trinh va ba't phu'dng trinh to hdp c6n co mSt trong nhieu de thi tuyen sinh vao Dai hoc, Cao dang khac. (Trong cac de thi Thidu 5: Giai bat phiTdng trinh: - A 2^ - A^^ < - C ^ +10 viec giai cac phu'dng trinh nay la bu'dc thii nha't cua Idi giai. Sau khi tim du'dc n 2 X ta mdi giai dU'dc tiep bai loan). ,. Giai (1) I §3. CAC BAI TOAN VE PHEP O^M X6t ba't phifdng trinh: - A | , - A^, < -C^, +10. f Hai quy t^c chinh de giai cac bai loan ve phep de'm la: Quy tac cong va quy 2 X (2) fcnhan. 1 (2x)! x! + 10 Khi do (1) - ^ ^ Dieu kien de (1)2 (co2 xnghiem x! Hai phu'dng phap chinh de giai c^c bai toan ve phep de'm la: rt*-' - 2 ) ! (lax -x2>) !3,
  17. f l i i m n g phap giai T a i n l i o n g 13m - Phan Huy Khii A. PHEP D E M K H O N G LAP Do A, B, C d6i mot khong giao nhau, nen theo quy t^c cpng, ta c6: Trong phep dcm khong lip, moi ye'u to ca'u thanh ncn phan lit can de'm cii, IQI = lAI + IBI + ICI. (1) xuat hien to'i da mot Ian, khong c6 s\i iSp lai. S\i dung quy t^c nhan, ta c6: Day 1^ bai toin chu dao cua phep dem. Trong so cac bai toan ve phep dCii, CO mat trong cac de thi luyen sinh tilf 2002 - 2011, cac bai toan ve phep dem lAl = C-;'5.C^.C|„ =22750; IBI = C^j.C^Cl,, = 10500; ICI = c],.c\.cl, =23625 A Thay vao ( D t a c o : IQI = 56875. khong lap chiem ti le 95% (la 100% doi vdi cac de thi tuyen sinh vao Dai hoc cac khoi A, B, D trong nhiJng nam ay). Vav CO 56875 each chon de kiem tra thoa man yeu cau. NhiT da noi d tren, de giai cac bai toan ve phep dem khong lap, ta c6 hai fhidu 2: (De thi tuyen sinh Dgi hQC khoi B - 2005) phu'dng phap chinh de giai: Mot doi thanh nien tinh nguyen c6 15 ngiTdi gom 12 nam, 3 nff. Hoi c6 bao a. PhUdiig phap trUc tiep nhieu cdch phan cong doi thanh nien do ve giiip dd 3 tinh mien niii, sao cho moi Phep de'm trifc tiep la phi/dng phap di thang vao cac yeu cau bai toan dat la tlnh c6 4 nam va 1 nur? noi mot each nom na "hoi gi, dem nay" la noi dung cua phu'dng phap nay. Giai De su' dung du'dc phu'dng phap triTc tiep ta chu yeu diing quy tac cong va quy Dau tien, chon 4 nam va 1 nff cho tinh thff nha't. f .: , tSc nhan. Nen lu\ y rang noi chung trong moi bai toan ve phep dem hai quy tac Theo quy t^c nhan so each chon la: n, = CfjC, = 1485 . o < nay thu'dng suT dung dong thdi va dan xen Ian nhau: b. PhUcfng phap gidn tiep: Sau do chon 4 nam (trong 8 nam con lai) va 1 nff (trong 2 nff cdn lai) cho tinh Phu'dng phap nay diTa tren nguyen li "dem nhiJng cai khong can dem, de biei thit hai. Lai theo quy ti(c nhan, so cdch chon la: n 2 = C x C 2 = 1 4 0 . nhSng cai can de'm". Noi theo ngon ngi? cua li thuye't tap hdp, thi phi^dng phap (DI nhien con lai ta chon xong tinh thff 3) , gian tiep thiTc chat la "phep lay phan bii". Vay theo quy t^c nhan, so each phan cong theo yeu cau la: Di nhien quy ta'c cong va quy tac nhan van se la cong eta chinh diing trons n = n,.n2 =1485.140 = 207900. j : phu'dng phap gian tiep nay. Nhan xet: Bai thi dffdc giai thuan ttay chi bang quy tile nhan. Cac d^ng toan cdban Thidvi 3: (De thi tuyen sinh Cao dang Co khi luyen kirn - 2005) ^ Loai 1: Sur dung phu'dng phap triTc tie'p giai cac bai toan phep de'm khong lap Co 5 Nha Toan hoc nam, 3 Nha Toan hoc nff, 4 Nha Vat li nam. Lap mot Thid^ 1: (De thi Dgi hQC khoi B - 2004) doan cong tac 3 ngffdi can c6 ca nam va nff, ca nha toan hoc va nha vat li hoc. Trong mot mon hoc, thay giao c6 30 cau hoi khac nhau gom 5 cau hoi khi Hoi CO bao nhieu each lap doan cong tac? 10 cau hoi trung binh, 15 cau hoi de. Tif 30 cau hoi do c6 the lap diTdc ban Giai nhieu de kiem tra, moi de gom 5 cau hoi khac nhau, sao cho trong moi de nh.ii Chi CO 3 cdch lap doan cong tac nhff sau: thiet phai cd du 3 loai cau hoi va so' cau hoi de khong it hdn 2? Giai - Gom 2 Nha Vat li nam, 1 Nha Toan hoc nff. I Goi A la tap hdp cac cich chon de c6 3 cau hoi de, 1 cau hoi kho, 1 cau ^ Theo quy t^c nhan so each chon la: C^C^ = 6.3 = 18. trung binh. - Gom 1 Nha Vat li nam, 2 Nha Toan hoc nff. Goi B la tap hdp cac each chon de c6 2 cau hoi de, 2 cau hoi kho, 1 cfu' Theo quy t^c nhan, so each chon \h: C^C] =4.3 = 12. trung binh. - Gom 1 Nha Vat li nam, 2 Nha Toan hoc nff, 1 Nha Toan hoc nam. . Goi C la tap hdp cdc cdch chon de c6 2 cau hoi de, 1 cau hoi kh6, 2 ca^' Theo quy t^c nhan, so each chon la: C 4 C 3 C 5 =4.3.5 = 60. trung binh. Goi Q la tap hdp each chon de theo yeu cau de bai. Ta CO Q = A u B u C. Theo quy t^e cpng, so each lap doan cong tac la: 18 + 12 + 60 = 90. - Vay CO 90 each lap doan cong tac . ' 213 m
  18. Thidu 4: C o 6 qua ciu xanh danh so tiT 1 den 6, 5 qua cau do danh so' tuT 1 de'n Tiif dd ta suf dung quy lie nhan de giai bai todn nhi/ sau: : \ 5, 4 qua cau vang ddnh so' tif 1 de'n 4 . Bu'dc 1: Chpn ra 3 trong 8 so' da c6 83 + 34 + aj = 8. .j^^, y^^-^. Hoi CO bao nhieu cdch lay ra 3 qua cau vifa khdc mau, vCra khac so. Theo tren so' each chpn ni = 2. Giai Bu'dc 2 : V d i ba so chpn d biTdc 1, cd: n2 = 3! = 6 cdch lap so' 3 3 3 4 8 5 . , Suf dung quy t i e nhan de giai bai loan tren: ,, , ^ ) ti \ ' OK ,' Bu'dc 3: Chpn rs so' 3,3235 theo thu" tiT tren. Dsy I 3 csch chpn 3 trong 6 so', cd - B i / d c 1: Chon cau vang ni = 4. jjijj t i / s i p xep. So C 3 c h chpn n3 = = 120. - Bifdc 2: Chpn cau do: Liic nay phai loai di qua cau do da c6 so' trilng vdj Theo quy lie nhan, so'cdch chpn theo yeu cau la n = nin2n3 = 2.6.120 = 1440. qua cau vang da chon d b\Xdc 1, vi the so'c^ch chon qua cau do la nj = 4. - BiTdc 3: Chpn cau xanh: Lan nay phai loai di 2 qua cau xanh c6 so irung Thidu 7: TiT cdc chff so' 0, 1,2, 3, 4 , 5, 6 cd the lap diTdc bao nhieu so' tiT nhien vdi so' cua qua cau do da chon d hxXdc 2 va qua cau vang da chpn d hxidc 1. V I chi^n cd 5 chff so' khac nhau m^ moi so lap du'dc deu nhd hdn 2500? the' so each chpn qua cau xanh la nj = 4. m:
  19. Cty TNHH MTV DWH Khang Vigt ^ Lo^ii 2: Sur dung phu-dng phap g i i n tiep giai cac b^i todn v6 phep dem khong lap: Giai bkng phtfdng phap gian tiep so cdch do l a : Thidu 1: (De thi tuyen sinh Dai hgc khoi D - 2006) C^() _ = 4060 - 2925 = 1135 . D o i thanh n i e n xung k i c h cua m o t trtfdng pho thong c6 12 hoc sinh, g o m 5 f/i« J ; M p t hop diTng 4 vien b i do, 5 vien b i tr^ng v^ 6 v i e n b i v^ng. NgiTdi ta hoc sinh Idp T , 4 hoc sinh Idp L va 3 hoc sinh Idp H . C a n chpn 4 hoc sinh thani ghpn ra 4 vien tCr trong hop do. H o i cd bao nhieu cdch chpn de so b i lay ra gia trifc tuan, sao cho 4 hpc sinh do thupc khong q u i 2 trong 3 Idp ndi Iren. H o i kh6ng4uca3mau? . iVu a i , d n / ; ) / ; ! . t c6 bao nhieu each chpn? Giai Gpi A la tap hdp cac cdch chpn 4 vien b i tily y trong 15 vien. |.| j G p i A la tap hdp m p i each chpn 4 hpc sinh trong 12 hpc sinh. Gpi B la tap hdp cac each chpn 4 vien bi du ca 3 mau. j ^^ - G p i B la tap hdp cdc c^ch chpn khong thoa man y e u cau dau b a i (ttfc la chon Gpi C la tap hdp cac each chpn 4 vien b i theo y e u cau dau bai. du hpc sinh 3 Idp). Ta cd: ICI = lAI - IBI. (1) . G p i C la tap hdp cAch chpn thoa man y e u cau dau bai. D e t h a y l A I = c;*5 = 1365. (2) Tac6A = B u C ; B n C = 0 . Gpi B i la tap hdp cac each chpn 2 vien b i do, 1 trang, 1 xanh. Theo quy l^c cpng, ta c6: lAI = IBI + ICI => ICI = lAI - IBI. (1) B 2 la tap hdp cac each chpn 1 b i do, 2 tr^ng, 1 xanh. Ta CO ngay lAI = C/j = 4 9 5 . (2) B3 la tap hdp cac cdeh chpn 1 b i do, 1 tr^ng, 2 xanh. D e tinh IBI, ta nhan thay se chpn 1 Idp c6 2 hpc sinh va 2 Idp c 6 n l a i m o i Idp Theo quy t^c cpng va nhan, ta c6: 1 hpc sinh. Theo quy t^c cpng va nhan ta c6: IBI = IB,l + IB2l + IB3l =C^C^C|,+Cl,C^cUcl,C;C^ = 7 2 0 . (3) \ I B N C ^ C l j C ^ + C ^ C ^ C ^ + C ^ C i C ^ = 1 2 0 + 90 + 6 0 - 2 7 0 . (3) Thay (2) (3) vao (1) va c d : ICI = 1365 - 720 = 645. Thay (2) (3) v^o (1) va c6: ICI = 495 - 270 = 225. Vay cd 645 each chpn 4 vien b i theo y e u cau de b a i . V a y CO 225 each chpn. 'J Thidu 4: 6 mpt triTdng tieu hpc cd 50 em la hpc sinh g i d i , trong do cd 4 cap em Thi 2: (De thi tuyen sinh Cao dang Supham Ha Ngi - 2005) sinh doi. Can chpn ra 3 hpc .sinh trong so' 50 em de d i dif trai hb. H o i cd bao nhieu Trong m o t to hpc sinh cua Idp 12A c6 8 nam va 4 nu". Thay giio muon chpn cdch chpn ma trong nhdm 3 e m diTdc chpn khong cd cSp anh e m sinh d o i nao? 3 hpc sinh de l a m tri/c nhat idp hpc, trong do phai c6 it nha't 1 hpc sinh nam. H o i Giai thay giao c6 bao nhieu each chpn? Goi A la tap hdp cac each chon tuy y 3 em trong so 50 e m . Giai Gpi B la tap hdp cic c i c h chpn 3 e m , trong do cd 1 cSp sinh d o i . G p i A la tap hdp so cdch chpn tily y 3 hpc sinh trong 12 hpc sinh. Gpi C la tap hdp cac cdch chpn 3 e m theo y e u cau de b a i . G p i B la lap hdp so each chpn ca 3 ni? sinh. Ta cd: ICI = lAI - IBI. (1) G p i C la tap hdp so each chpn theo y e u cau de ra. T a c 6 I A I = C^„ = 1 9 6 0 0 . ; Ta CO (lap luan nhiTthi du 1 ) : ICI = lAI - IBI. (1) T i m IBI theo quy t^c nhan nhiTsau: i ' - •' • De thay: lAI = C/j = 220, IBI = C^4 = 4. - Chpn cap sinh d o i : cd n) = 4 each chpn. Tir do theo (1) ta c6: ICI = 220 - 4 = 216. V a y cd 216 cdch chpn. • .'1 ' - Chpn 1 e m c o n l a i trong 48 e m , cd n2 = 48 each chpn. Nhan xet: Hoan toan ti/dng l y trong de thi tuyen sinh "Cao dan^ khoi A - 2004" Theo quy t^c nhan ta cd: IBI = nin2 = 4. 48 = 192. c6 b&i toan: Vay tir (1) suy ra: ICI = 19600 - 192 = 19408. M p t Idp hpc c6 30 hpc sinh, trong do c6 3 can bp Idp. C d bao nhieu c^ch d:>^^ ••»••. Vay so each chpn la 19408. chpn 3 c m trong Idp de trifc tuan sao cho trong 3 em do luon c6 cdn bp Idp? 216 217
  20. PhL/ong ph^p g\&\n trgng l a m - Phan Huy Kh^i Cty TNHH iqiWTWVFTKhang Vi^t Thi dfi 5: Cho hinh thap giac l o i . H o i c6 the lap dUdc bao n h i e u tarn giac co V ii 5 + 4 > 6 , 5 + 3 > 6 , 4 + 3 > 6 , nen khong xay ra tru'cfng hdp sau k h i tang dinh la dinh cua thap giac l o i , nhU'ng canh cua tarn g i i c khong phai la canh cii;, g^ch xong chi con l a i 1 the loai sach. thap giac loi? V i t h e B = B| 1 ^ B 2 u B 3 , trong do B , , B 2 , B 3 t U d n g i?ng la tap hdp ta't ca cac Giai ^^ch tang sach m a sau k h i tang sach xong, thay giao he't sach van hoc, he't sach G o i A la tap hdp tat ca cac tam giac c6 3 dinh la cac d i n h ciia thap giac. gin n h a c , h e t sach hoi hoa. , > , . , 'rp^i -.^ p, ^,, ^ G o i B la tap h d p tat ca cac tam giac c6 3 dinh la dinh cua thap giac nhtfng to Tac6ngay: IB,I = C^ . 6 ! = 5040. ; W K ! ) < u , r n • : it nhat 1 canh cung la canh cua thap giac. ( V i B i la tap hdp ta't ca cdc cdch tang 5 s a c h van hoc va 1 sach khac. Cuon G o i C l a t a p h d p c a n t i m t a c o : ICI = I A I - I B I . (1) sach khac tijy chon trong 7 cuon con l a i . ii^irftA « .,,..> t, De thay I A I = C„) = 120. (2) " Tirt^ngtif: IB2I = Cx.6! = 20160 ; IB3I = C 5 . 6 ! = 6 0 4 8 0 . o - i 1,/, r i , ; > G o i B| la tap hdp cac tam giac c6 3 dinh la dinh cua thap giac va c6 dung i Theo quy t^c cong t h i : IBI = IB,I + IB2I + IB3I = 85680. (3) ' * '' • canh la canh cua thap giac; B 2 la tap hdp cac tam giac c6 3 dinh cua thap giac TO (1) (2) (2) suy ra: ICI = 6 6 5 2 8 0 - 85680 = 579.600.. .! |V € ;£ / va C O 2 canh la canh cua thap giac. K h i do theo quy tac cong, ta c6: B. P H E P D E M C O L A P rtfirfa v... ^ IBI = IB,l + I B 2 l . (3) a, De g i a i bai toan v e phep de'm c6 lap, ngUdi ta quy ve ph6p dd'm khong lap De tinh IBJ ta se suf dung quy t^c nhan nhif sau: r va suf dung cac phUdng phap g i a i n h u da diang trong § 1. - B\idc 1: Chon 1 canh cua thap giac l a m canh cua tam giac. Thidu 1: Cho tap hdp E = { 1; 2; 3; 4; 5; 6}. Co the lap diTdc bao nhieu so'c6 4 So'each chon U i = 10. chfl" so' khong yeu cau d o i m o t khac nhau (cac chCf so' nay chon tijf tap h d p E) sao - Birdc 2: K h i do dinh thu* ba can chon cua tam gidc difdc chon trong 6 dinli cho m o i so tao thanh deu chia he't cho 4? , con l a i (triif 2 dinh cua canh dUdc chon va 2 dinh khac cua thap giac ke v d i hai Giai « ,': ; •' dinh ay). So each chon la: nz = 6. V i the: IB,! = U j U z = 10.6 = 60. Nhu" da biet m o t so' c6 tiJf hai chu' so' t r d l e n chia he't cho 4 k h i va c h i k h i hai De thay IB2I = 10. s6' cuo'i cua so do chia he't cho 4. Tir do theo (3), ta c6: IBI = 70. (4) TO tap hdp E c6 the chon ra cac so' sau c6 hai chi? so' ma chia he't cho 4: Tir (2) (3) (4) suy ra:ICI = 120 - 70 = 50 . 12, 16, 24, 28, 32, 36, 44, 52, 56, 64. _^^,^iJ V a y C O 50 tam giac thoa m a n yeu cau de bai. Thidu. 6: M o t thay giao c6 12 cuon sach doi mot khac nhau, trong do c6 5 cuon Ta g i a i b a i toan tren b^ng quy tac nhan nhU'sau: s .? sdch V a n hoc, 4 cuon a m nhac, va 3 cuon h o i hoa (cac cuon d o i m o t khac Bxidc 1: Chon 2 so' cuo'i, theo tren ta c6 so' each chon n i = 9. oii ; nhau). Ong m u o n lay ra 6 cuon va dem tang cho 6 hoc sinh, m o i hoc sinh mot Bu'dc 2: Chon so hang tram, so' each chon n2 = 6. i cuon sao cho sau k h i tang sach xong, m o i mot trong 3 the loai van hoc, am B\idc 3: Chon so hang n g h i n , so'each chon U s = 6. , ,j ,. nhac, h o i hoa deu con l a i it nhat 1 cuon. H o i c6 bao nhieu each tang? Theo quy t^c nhan, so'cac so'phai t i m la n = n i n 2 n 3 = 9.6.6 = 324. , j , ; , Giai Nhan xet: " :> - G o i A la tap hdp tat ca cac each tang sach cho hoc sinh. • O day khong d o i h o i cac c h i i ' so' ciia so' c6 4 chi? so d o i m o t khac nhau, nen G o i B la tap hdp ta't ca cac each tang sao cho sau k h i tang s i c h k h o n g c6n du "^ho phep cac so da diing r o i d i T d c d i i n g lai (phep d e m c6 lap). , ba the l o a i ; va C la tap hdp ta't ca cac each tang theo y e u cau. ' N e u bai toan d o i h o i them: Cac chi? so' c6 4 chi? so' p h a i d o i mot khac nhau. T a c o u : |C| = |A|-|B|. (1) Cac ban ihuf g i a i bai ioin ve ph6p d e m khong lap n a y . De thay lAI = C*^ .6! = 665280 (2) E>dp so: 96 so. (Cfj la each chon 6 quyen trong 12 quyen. Sau k h i c6 6 quyen thi c6 6! c i c h ^hidvi 2: Co the lap di?de bao nhieu so c6 6 ehff so sao cho so 1 c6 m a t to'i da 5 tang 6 quyen sach cho 6 hoc sinh). ^^n, cac s o 2, 3, 4 m o i s o c6 m a t toi da 1 Ian?
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2