intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Hóa học phức chất - Chương 1

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:9

1.040
lượt xem
271
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'hóa học phức chất - chương 1', khoa học tự nhiên, hoá học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Hóa học phức chất - Chương 1

  1. Chương 1. Mở đầu về hóa học phức chất Lê Chí Kiên Hỗn hợp phức chất NXB Đại học quốc gia Hà Nội 2006. Tr 4 – 12. Từ khoá: Phức chất, hóa học phức chất, ion trung tâm, phối tử, gọi tên phức chất, phân loại phức chất. Tài liệu trong Thư viện điện tử ĐH Khoa học Tự nhiên có thể được sử dụng cho mục đích học tập và nghiên cứu cá nhân. Nghiêm cấm mọi hình thức sao chép, in ấn phục vụ các mục đích khác nếu không được sự chấp thuận của nhà xuất bản và tác giả. Mục lục Chương 1 MỞ ĐẦU VỀ HOÁ HỌC PHỨC CHẤT .........................................................2 1.1 Những khái niệm cơ bản của hoá học phức chất .....................................................2 1.1.1 Ion trung tâm và phối tử ....................................................................................3 1.1.2 Số phối trí .........................................................................................................3 1.1.3 Dung lượng phối trí của phối tử .........................................................................5 1.2 Cách gọi tên các phức chất.....................................................................................6 1.3 Phân loại các phức chất..........................................................................................7
  2. 2 Chương 1 MỞ ĐẦU VỀ HOÁ HỌC PHỨC CHẤT 1.1 Những khái niệm cơ bản của hoá học phức chất Từ giáo trình hoá học vô cơ chúng ta đã biết rằng khi các nguyên tố hoá học riêng biệt kết hợp với nhau thì tạo thành các hợp chất đơn giản, hay các hợp chất bậc nhất, ví dụ các oxit (Na2O, CuO,...), các halogenua (NaCl, CuCl2,...). Những hợp chất đơn giản lại có thể kết hợp với nhau tạo thành hợp chất bậc cao, hay hợp chất phân tử, ví dụ K2HgI4 (HgI2.2KI); Ag(NH3)2Cl (AgCl.2NH3); K4 Fe(CN)6 [Fe(CN)2. 4KCN]... Gọi chúng là các hợp chất phân tử để nhấn mạnh rằng ở đây không phải là các nguyên tử hay các gốc, mà là các phân tử kết hợp với nhau. Cấu tạo của chúng không được giải thích thoả đáng trong khuôn khổ của thuyết hóa trị cổ điển. Có một vấn đề đặt ra là trong số các hợp chất phân tử thì hợp chất nào được gọ i là hợp chất phức (phức chất). Theo A. Werner, tác giả của thuyết phố i trí thì phức chất là hợp chất phân tử nào bền trong dung dịch nước, không phân huỷ hoặc chỉ phân huỷ rất ít ra các hợp phần tạo thành hợp chất đó. Trong lịch sử phát triển của hoá học phức chất đã có nhiều định nghĩa về phức chất của các tác giả khác nhau. Tác giả của các định nghĩa này thường thiên về việc nhấn mạnh tính chất này hay tính chất khác của phức chất, đôi khi dựa trên dấu hiệu về thành phần hoặc về bản chất của lực tạo phức. Sở dĩ chưa có được định nghĩa thật thoả đáng về khái niệm phức chất vì trong nhiều trường hợp không có ranh giới rõ rệt giữa hợp chất đơn giản và phức chất. Một hợp chất, tuỳ thuộc vào điều kiện nhiệt động, khi thì được coi là hợp chất đơn giản, khi thì lại được coi là phức chất. Chẳng hạn, ở trạng thái hơi natri clorua gồm các đơn phân tử NaCl (hợp chất nhị tố đơn giản), nhưng ở trạng thái tinh thể, thì như phép phân tích cấu trúc bằng tia X đã chỉ rõ, nó là phức chất cao phân tử (NaCl)n, trong đó mỗi ion Na+ được phố i trí một cách đố i xứng kiểu bát diện bởi 6 ion Cl–, và mỗ i ion Cl– được phố i trí tương tự bởi 6 ion Na+. Để ít nhiều có thể phân rõ ranh giới tồn tại của phức chất có thể đưa ra định nghĩa sau đây của A. Grinbe: Phức chất là những hợp chất phân tử xác định, khi kết hợp các hợp phần của chúng lại thì tạo thành các ion phức tạp tích điện dương hay âm, có khả năng tồn tại ở dạng tinh thể cũng như ở trong dung dịch. Trong trường hợp riêng, điện tích của ion phức tạp đó có thể bằng không. Lấy ví dụ hợp chất tetrapyriđincupro (II) nitrat [CuPy4](NO3)2. Có thể coi hợp chất này là sản phẩm kết hợp giữa Cu(NO3)2 và pyriđin (Py). Tính chất của phức chất tạo thành khác biệt với tính chất của các chất đầu. Phức chất trên có khả năng tồn tại ở dạng tinh thể và trong dung dịch. Định nghĩa này tất nhiên cũng chưa thật hoàn hảo vì bao gồm cả các oxiaxit kiểu H2SO4 và các muố i sunfat. Điều này không phải là nhược điểm, vì về một số mặt có thể coi các hợp chất này là phức chất.
  3. 3 Cho đến gần đây người ta vẫn còn bàn luận về khái niệm phức chất. Theo K. B. Iaximirxki thì “phức chất là những hợp chất tạo được các nhóm riêng biệt từ các nguyên tử, ion hoặc phân tử với những đặc trưng: a) có mặt sự phối trí, b) không phân ly hoàn toàn trong dung dịch (hoặc trong chân không), c) có thành phần phức tạp (số phối trí và số hoá trị không trùng nhau)”. Trong ba dấu hiệu này tác giả nhấn mạnh sự phố i trí, nghĩa là sự phân bố hình học các nguyên tử hoặc các nhóm nguyên tử quanh nguyên tử của một nguyên tố khác. Do có mặt sự phố i trí trong phân tử nên hiện nay người ta còn gọi phức chất là hợp chất phố i trí. Tuy nhiên, khái niệm “phức chất” rộng hơn khái niệm “hợp chất phố i trí”. Phức chất còn bao gồm cả những hợp chất phân tử trong đó không thể chỉ rõ được tâm phố i trí và cả những hợp chất xâm nhập. Khi tạo thành phức chất các hợp chất đơn giản không thể kết hợp với nhau một cách tuỳ tiện mà phải tuân theo những quy luật nhất định. Các quy luật dùng làm cơ sở cho việc điều chế phức chất, cũng như các quy luật điều khiển quá trình hình thành chúng sẽ được nghiên cứu trong môn hoá học phức chất. 1.1.1 Ion trung tâm và phối tử Thông thường ion trung tâm (“nhân” phố i trí) là cation kim lo ại hoặc oxocation kiểu UO22+, TiO2+ (*), còn phố i tử (ligand) có thể là các ion hoặc phân tử vô cơ, hữu cơ hay cơ nguyên tố. Các phố i tử hoặc không tương tác với nhau và đẩy nhau, hoặc kết hợp với nhau nhờ lực hút kiểu liên kết hiđro. Tổ hợp các phố i tử liên kết trực tiếp với ion trung tâm được gọi là cầu nội phối trí. Các phố i tử liên kết với ion trung tâm bằng các liên kết hai tâm σ, π và δ và bằng các liên kết nhiều tâm. Các liên kết hai tâm ion trung tâm - phố i tử được thực hiện qua các nguyên tử cho của phố i tử; liên kết σ kim loại - phố i tử thường là liên kết cho - nhận: nguyên tử cho của phố i tử công cộng hoá cặp electron không liên kết của mình với cation kim loại, cation này đóng vai trò chất nhận: Ni2+ + NH3 Ni NH3 ] [ Các phố i tử phố i trí qua nguyên tử cacbon thường là các gốc (ví dụ •CH3) và tương tác của chúng với nguyên tử kim loại là sự hình thành liên kết cộng hóa trị nhờ sự ghép đôi các electron. Cách thức này thường gặp trong hoá học của các hợp chất cơ kim. Về hình thức có thể coi liên kết M – CH3 là kết quả tương tác của nguyên tử cho C trong anion :CH3– với cation kim lo ại. Là chất cho elecctron σ, phố i tử có thể đồng thời đóng vai trò chất cho hoặc chất nhận các electron π. Điều này xảy ra với những phố i tử mà phân tử của chúng là chưa bão hoà, ví dụ CO, NO, CN– v.v... Có nhiều phức chất ion trung tâm là phi kim, ví dụ trong ion amoni NH4+, oxoni H3O+, ... đóng vai trò ion trung tâm là nitơ và oxi. 1.1.2 Số phối trí (*) Ở đây cần hiểu ion kim loại là nguyên tử kim loại ở m ột trạng thái hoá trị xác định, mặc dù không đồng nhất với ion kim loại ở trạng thái tự do không phối trí. Trong một số phức chất nguyên tử kim loại đóng vai trò nguyên tử trung tâm, ví dụ nguyên tử trung tâm Ni trong Ni(CO)4.
  4. 4 Werner gọ i hiện tượng nguyên tử (ion) trung tâm hút các nguyên tử (ion) hoặc các nhóm nguyên tử bao quanh nó là sự phố i trí. Còn số các nguyên tử hoặc các nhóm nguyên tử liên kết trực tiếp với nguyên tử (ion) trung tâm được gọi là số phối trí của nguyên tử (ion) trung tâm đó (viết tắt là s.p.t.). Nguyên tử trung hoà và các ion của nó về mặt lý thuyết phải có khả năng phố i trí khác nhau. Bởi vậy không nên nói chung chung về s.p.t. của platin hoặc của coban, mà phải nói s.p.t. của Pt(II), Pt(IV), của Co(II), Co(III) v.v... Nếu liên kết ion trung tâm - phối tử là liên kết hai tâm thì số phố i trí bằng số liên kết σ tạo bởi ion trung tâm đó, nghĩa là bằng số nguyên tử cho liên kết trực tiếp với nó. Số phối trí có thể là cao hoặc thấp. Ví dụ ion Ag+ trong [Ag(NH3)2]OH có s.p.t. = 2, ion Al3+ trong [Al(H2O)6]Cl3 có s.p.t. = 6, ion La3+ trong [La(H2O)9](NO3)3 có s.p.t. = 9. Trong một số trường hợp s.p.t. có thể còn cao hơn nữa, ví dụ đối với phức chất của đất hiếm, ion đất hiế m còn có thể có s.p.t. = 12. Các số phối trí thường gặp là 4, 6 và 2. Chúng tương ứng với các cấu hình hình học có đối xứng cao nhất của phức chất: bát diện (6), tứ diện hoặc vuông (4) và thẳng (2). Thực nghiệm cho biết rằng có những ion được đặc trưng bằng s.p.t. không đổ i, ví dụ các ion Co(III), Cr(III), Fe(II), Fe(III), Ir(III), Ir(IV), Pt(IV),… đều có s.p.t. = 6, không phụ thuộc vào bản chất của phối tử cũng như vào các yếu tố vật lý. Một số ion có s.p.t. không đổi là 4: C(IV), B(III), Be(II), N(III), Pd(II), Pt(II), Au(III). Đối với đa số các ion khác s.p.t. thay đổ i phụ thuộc vào bản chất của phố i tử và vào bản chất của ion kết hợp với ion phức. Ví dụ, Cu(II) có s.p.t. 3, 4, 6 (phức chất với s.p.t. 6 kém bền). Ni(II) và Zn(II) có s.p.t 6, 4, 3 (phức chất với s.p.t. 6 của chúng bền hơn của Cu(II)). Ag(I) có s.p.t. 2 hoặc 3, Ag(II) có s.p.t. 4. Sau đây là ví dụ về một số phức chất của chúng: [CuEn3]SO4; [CuEn3][PtCl4]; [CuEn3](NO3)2.2H2O; [CuPy6](NO3)2; [Cu(NH3)4](SCN)2; [Cu(NH3)4]SO4.H2O; [CuPy4](NO3)2; [Cu(H2O)4]SO4.H2O; K2[Cu(C2O4)2].2H2O; K2[CuCl4] v.v… [NiEn3]SO4; [NiEn3][PtCl4]; [NiEn3]Cl2 ; [Ni(NH3)6]Br2; K4[Ni(SCN)6]; K2[Ni(C2O4)2]; K2[Ni(CN)4]. [ZnEn3]SO4; [ZnEn3][PtCl4]; [Zn(NH3)4][PtCl4]; K2[Zn(C2O4)2]; K2[Zn(CN)4]; K[Zn(CN)3]. [Ag(NH3)2]2[PtCl4]; [Ag (NH3)2] X; K[Ag(CN)2]; [AgPy4](NO3)2; [AgPy4]S2O8. Số phối trí còn phụ thuộc vào nhiệt độ. Thường khi tăng nhiệt độ thì tạo ra ion có s.p.t. thấp hơn. Ví dụ, khi đun nóng hexammin coban (II) cao hơn 150oC thì tạo thành điammin, đồng thời s.p.t. của Co (II) từ 6 chuyển sang 4: >150o C ⎡Co ( NH3 ) ⎤ Cl2 ⎡Co ( NH3 ) Cl 2 ⎤ + 4NH3 ⎣ 6⎦ ⎣ ⎦ 2 Sự bão hoà s.p.t. có ảnh hưởng đến độ bền của trạng thái hoá trị của nguyên tố. Thường sự phố i trí của các phố i tử khác nhau đối với ion kim loại làm tăng độ bền của trạng thái hoá trị cao nhất. Ví dụ, trong các hợp chất đơn giản trạng thái Co(III) kém bền, trong khi đó nhiều phức chất của Co(III) có độ bền cao. Thông thường s.p.t. lớn hơn số hóa trị của ion trung tâm. Chẳng hạn, trong nhiều dẫn xuất của Pt(IV) ([Pt(NH3)2Cl4], K2[PtCl6]); của Co(III) ([Co(NH3)6]Cl3, [Co(NH3)4(NO2)2]Cl; của Ir(III), Ir(IV) (K3[IrCl6], K2[IrCl6]) s.p.t. của ion trung tâm bằng 6. Nếu những gốc đa hoá trị
  5. 5 kết hợp với ion trung tâm thì s.p.t. có thể nhỏ hơn số hoá trị. Điều này thể hiện trong nhiều muố i của oxiaxit (sunfat, clorat, peclorat…). Chẳng hạn, trong ion SO42– có 4 ion O2– phố i trí, nghĩa là s.p.t. của S(VI) bằng 4. Có trường hợp s.p.t. bằng số hoá trị, ví dụ ở C(IV). 1.1.3 Dung lượng phối trí của phối tử Trong cầu nộ i phố i trí mỗ i phố i tử có dung lượng phố i trí của nó. Dung lượng phối trí (d.l.p.t.) của một phối tử là số vị trí phố i trí mà nó chiếm được trong cầu nộ i. Các phố i tử liên kết trực tiếp với ion trung tâm bằng một liên kết thì có d.l.p.t. 1. Đó là các gốc axit hóa trị 1, các phân tử trung hoà như NH3, CH3NH2, C5H5N, H2O, C2H5OH…, các ion đa hóa trị như O2–, N3–... Nếu một phối tử liên kết với ion trung tâm qua hai hay một số liên kết, thì phố i tử đó chiếm hai hoặc nhiều hơn vị trí phố i trí và được gọ i là phố i tử phố i trí hai, phối trí ba hoặc đa phố i trí (hoặc còn gọi là phố i tử hai càng, ba càng hoặc đa càng). Các gốc axit SO42–, C2O42–..., các phân tử trung hoà như etilenđiamin NH2–CH2–CH2–NH2 có d.l.p.t. 2, triaminopropan CH2NH2–CHNH2–CH2NH2 có d.l.p.t. 3 v.v... Phân tử của các phố i tử đa phối trí liên kết với ion trung tâm trong cầu nộ i qua một số nguyên tử, tạo thành các vòng và những phức chất chứa phối tử tạo vòng được gọ i là phức chất vòng (phức chất vòng càng, hợp chất chelat). Ví dụ, khi cho đồng (II) hiđroxit tương tác với axit aminoaxetic (glyxin) thì tạo thành phức chất trung hoà: CH 2 NH 2 H2N H 2N CH 2 CH 2 CH 2 NH 2 + Cu + Cu O O O C OH H - 2H2O C C C O H HO O O O O Mỗi phân tử glyxin sử dụng hai nhóm chức: nó kết hợp với ion trung tâm qua nguyên tử nitơ của nhóm amino theo cơ chế cho-nhận, và qua nguyên tử oxi của nhóm cacboxyl bằng liên kết cộng hóa trị thông thường. Sau đây là một số ví dụ khác: O O C C OO C O C O Na3 Fe O O O O H2C NH2 CH2 NH2 Cl2 Cu CC NH2 H2C NH2 CH2 O O Natri trioxalatoferrat (III) Bis-(etilenđiamin) đồng (II) clorua Ở hoá học hữu cơ người ta biết rằng những vòng 5 hay vòng 6 cạnh là những vòng bền nhất, có năng lượng tự do nhỏ nhất. Những vòng 4 cạnh kém bền hơn, còn vòng 3 cạnh rất không bền. Những điều này cũng được áp dụng vào lĩnh vực phức chất. Ở đây ion oxalat tạo vòng 5 cạnh nên có xu hướng tạo phức mạnh hơn so với ion sunfat hoặc cacbonat (tạo vòng 4 cạnh). Sở dĩ hiđrazin NH2–NH2 chỉ chiếm một chỗ phối trí vì nó chỉ ghép vòng 3 cạnh: H 2N Me H 2N Vòng này không bền nên bị đứt ra và hiđrazin chỉ liên kết với kim loại qua một nguyên tử N, còn liên kết của nhóm NH2 thứ hai được biểu thị dưới dạng tương tác với axit. Ví dụ, phức
  6. 6 chất [Pt(NH3)2(N2H4)2]Cl2 có khả năng kết hợp với hai phân tử HCl nữa theo phương trình phản ứng: NH2 NH3 H3N NH2 NH2 H3N Pt Cl4 Pt Cl2 + 2HCl NH3 NH2 NH2 NH2 H3N H3N Ví dụ về phối tử phố i trí 4 là β’,β’’,β’’’-triaminotrietylamin N(CH2–CH2–NH2)3 trong các phức chất: [CuN(CH2–CH2–NH2)3]2+, [PtN(CH2–CH2–NH2)3]2+ v.v... Một ví dụ về phố i tử có khả năng chiếm 6 chỗ phối trí là anion của axit etilenđiamintetraaxetic. Trong phức chất NH4[Co(EDTA)], EDTA liên kết với Co(III) qua 4 nguyên tử O và 2 nguyên tử N: OOC CH2 CH2 COO N CH2 CH2 N OOC CH2 CH2 COO Phức chất trên được điều chế bằng phản ứng: ⎡Co ( NH3 ) ⎤ Cl3 + H4EDTA ⎯⎯ ⎡Co ( EDTA ) ⎤ NH4 + 3NH4Cl + 2NH3 →⎣ ⎦ ⎣ 6⎦ Sự có mặt các nhóm tạo vòng trong các phức chất chelat làm tăng mạnh độ bền so với các phức chất có thành phần tương tự nhưng không chứa nhóm tạo vòng. Sự tăng độ bền như vậ y được gọi là hiệu ứng chelat. Ví dụ, ion hexaammin coban (III) [Co(NH3)6]3+ có Kkb = 7.10–39 ở 25oC, trong khi đó tris-(etilenđiamin) coban (III) có Kkb = 2.10–49 ở cùng nhiệt độ (xem mục 5.6.2.2, chương V). 1.2 Cách gọi tên các phức chất Theo danh pháp IUPAC tên gọi chính thức các phức chất như sau: 1. Đầu tiên gọi tên cation, sau đó đến tên anion. 2. Tên gọ i của tất cả các phố i tử là anion đều tận cùng bằng chữ “o” (cloro, bromo, sunfato, oxalato...), trừ phối tử là các gốc (metyl-, phenyl-,…). Tên gọi các phố i tử trung hoà không có đuôi gì đặc trưng. Phối tử amoniac được gọi là ammin (hai chữ m, để phân biệt vớ i amin hữu cơ chỉ viết một chữ m), phố i tử nước được gọi là aquơ. 3. Số các nhóm phố i trí cùng loại được chỉ rõ bằng các tiếp đầu chữ Hy Lạp: mono, đi, tri, tetra v.v... Nếu có các phân tử hữu cơ phức tạp phối trí thì thêm các tiếp đầu bis, tris, tetrakis,… để chỉ số lượng của chúng. Chữ mono thường được bỏ. 4. Để gọi tên ion phức, đầu tiên gọ i tên các phố i tử là anion, sau đến các phố i tử trung hoà, sau nữa là các phố i tử cation, cuối cùng là tên gọ i của ion trung tâm. Công thức của ion phức được viết theo trình tự ngược lại. Ion phức được đặt trong hai dấu móc vuông. Hóa trị của ion trung tâm được ký hiệu bằng chữ số La Mã để trong dấu ngoặc đơn sau tên ion trung tâm (nếu gọ i tên cation phức hay phức chất không điện ly) hoặc sau đuôi “at” (nếu hợp chất chứa anion phức). Nếu nguyên tử trung tâm hoá trị không thì hóa trị được biểu thị bằng số 0.
  7. 7 Nếu một nhóm liên kết với hai nguyên tử kim loại (nhóm cầu), thì gọ i tên nó sau tên tất cả các phố i tử, trước tên gọi nó để chữ μ; nhóm cầu OH– được gọi là nhóm ol hoặc hiđroxo. Các đồng phân hình học được ký hiệu bằng chữ đầu cis- hoặc trans-. Sau đây là tên gọi của một số phức chất: [CoEn2Cl2]SO4 đicloro-bis-(etilenđiamin) coban (III) sunfat [Ag(NH3)2]Cl điammin bạc (I) clorua K2[CuCl3] kali triclorocuprat (I) [PtEn(NH3)2NO2Cl]SO4 cloronitrodiamminetilendiaminplatin (IV) sunfat [Co(NH3)6][Fe(CN)6] hexaammincoban (III) hexaxianoferrat (III) [Cu(NH3)2]OH điammin đồng (I) hydroxit OH 4- (C2O4)2Cr Cr(C2O4)2 OH ion tetraoxalato-đi-μ-ol-đicromat (III) 4+ NH2 (NH3)4Co Co(NH3)4 OH ion octaammin-μ-amiđo-ol-đicoban (III) 1.3 Phân loại các phức chất Có nhiều cách khác nhau để phân loại các phức chất. + Dựa vào loại hợp chất người ta phân biệt: Axit phức: H2[SiF6], H[AuCl4], H2[PtCl6]. Bazơ phức: [Ag(NH3)2]OH, [Co En3](OH)3. Muối phức: K2[HgI4], [Cr(H2O)6]Cl3. + Dựa vào dấu điện tích của ion phức: Phức chất cation: [Co(NH3)6]Cl3, [Zn(NH3)4]Cl2 Phức chất anion: Li[AlH4] Phức chất trung hoà: [Pt(NH3)2Cl2], [Co(NH3)3Cl3], [Fe(CO)5] Các phức chất trung hoà không có cầu ngoại. Phức tạp hơn là các trường hợp phức chất gồm cation phức và anion phức, ví dụ [Co(NH3)6][Fe(CN)6]. Thuộc loại cation phức còn có các phức chất oni, trong đó đóng vai trò của chất tạo phức là các nguyên tử phân cực âm của các nguyên tố âm điện mạnh (N, O, F, Cl,...), còn các nguyên tử hiđro phân cực dương là các phối tử. Ví dụ NH4+ (amoni), OH3+ (oxoni), FH2+ (floroni), ClH2+ (cloroni). + Dựa theo bản chất của phối tử người ta phân biệt: Phức chất aquơ, phối tử là nước H2O: [Co(H2O)6]SO4, [Cu(H2O)4](NO3)2.
  8. 8 Phức chất amoniacat hay amminat, phối tử là NH3: [Ag(NH3)2]Cl, [Co(NH3)6]Cl3, [Cu(NH3)4]SO4. Phức chất axit, phối tử là gốc của các axit khác nhau: K4[Fe(CN)6], K2[HgI4], K2[PtCl6]. Phức chất hiđroxo, phối tử là các nhóm OH–: K3[Al(OH)6]. Phức chất hiđrua, phố i tử là ion hiđrua: Li[AlH4]. Phức chất cơ kim, phố i tử là các gốc hữu cơ: Na[Zn(C2H5)3], Li3[Zn(C6H5)3]. Phức chất π, phối tử là các phân tử chưa bão hoà như etilen, propilen, butilen, stiren, axetilen, allylamin, rượu allylic, xyclohexen, xyclopentadienyl, cacbon oxit, nit ơ oxit v.v... Ví dụ K[PtCl3(C2H4)].H2O, [Fe(C5H5)2] (ferroxen), [Cr(C6H6)2], [Ni(CO)4], K2[Fe(CN)5NO],... Trong các phức chất nêu trên các phối tử liên kết với nguyên tử kim lo ại nhờ các eletron π của các phân tử chưa bão hoà. Dựa vào cấu trúc vỏ electron, đôi khi người ta chia các phố i tử ra làm hai loại như sau khi tham gia tạo phức với kim lo ại: (1) Phối tử có một hoặc nhiều hơn cặp electron tự do. Loại này lại được chia ra: – Phối tử khôngcó obitan trống để nhận các electron từ kim loại, ví dụ H2O, NH3, F–, H–, – CH3 . – Phố i tử có các obitan trống hoặc các obitan có thể sử dụng để tạo các liên kết p và nhận các electron từ kim loại, ví dụ PR3, I–, CN–, NO2–. – Phối tử có các electron p có thể điền vào các obitan trống của kim loại, ví dụ OH–, NH2 , Cl–, I–. – (2) Phối tử không có cặp electron tự do, nhưng có những electron có khả năng tạo các liên kết p, ví dụ etilen, ion xiclopentađienyl, benzen. Chúng có khả năng tạo thành các phức chất p như được trình bày ở trên. + Dựa theo cấu trúc của cầu nội phức – Theo số nhân tạo thành phức chất người ta phân biệt phức chất đơn nhân và phức chất nhiều nhân. Ví dụ phức chất hai nhân [(NH3)5Cr–OH–Cr(NH3)5]Cl5, trong đó hai ion crom (chất tạo phức) liên kết với nhau qua cầu nối OH. Đóng vai trò nhóm cầu nối là những tiểu phân có cặp electron tự do: F–, Cl–, O2–, S2–, SO42–, NH2–, NH2– v.v... Phức chất nhiều nhân chứa nhóm cầu nối OH được gọi là phức chất ol. Về mặt cấu trúc, nhóm cầu nối OH khác với nhóm hiđroxyl trong phức chất một nhân. Số phối trí của oxi trong cầu nối ol bằng ba, còn trong nhóm OH của phức chất một nhân bằng hai. – Dựa theo sự không có hay có các vòng trong thành phần của phức chất người ta phân biệt phức chất đơn giản (phố i tử chiếm một chỗ phố i trí) và phức chất vòng (đã nói ở phần trên). Hợp chất nội phức là một dạng của phức chất vòng, trong đó cùng một phố i tử liên kết với chất tạo phức bằng liên kết cặp electron và bằng liên kết cho - nhận, ví dụ natri trioxalatoferrat (III), bis-(etilenđiamin) đồng (II) đã nêu ở trên.
  9. 9 S O O H2O OH2 Cu H2O OH2 O O S H2O O O H2O OH2 Cu H2O OH2 O O S – Hợp chất quá phức (siêu phức): trong các hợp chất này số các phố i tử vượt quá s.p.t. của chất tạo phức. Ví dụ hợp chất CuSO4.5H2O (I). Đối với Cu(II) s.p.t. bằng 4 nên trong cầu nộ i chỉ có 4 phân tử nước được phố i trí. Phân tử nước thứ năm đóng vai trò cầu nố i, kết hợp với phức chất nhờ liên kết hiđro (liên kết ở cầu ngoại phức): [Cu(H2O)4]SO4.H2O. Đóng vai trò các phố i tử dư không chỉ có các phân tử nước, mà còn có các phân tử amoniac, amin, axit, muối, v.v… Ví dụ, các phức chất [SnPy2I4].3Py, [CrPy3Cl3].2C2H5CN, trans-[CoEn2Cl2]Cl.HCl.2H2O, [Pt(NH3)2(C6H5NH2)2]SO4.C6H5NH2, Cu[PtCl6].18NH3 v.v… – Poliaxit đồng thể và dị thể: Poliaxit là những phức chất oxo nhiều nhân chứa cầu nố i oxi. Nếu axit chứa nhân của cùng một nguyên tố thì đó là poliaxit đồng thể, ví dụ: H2[–O– SiO2…SiO2–O–]H2 (axit polimetasilixic). Trong poliaxit dị thể nguyên tử oxi cầu nố i kết hợp các nguyên tử của các nguyên tố khác nhau, ví dụ: H3[O3P–O–MoO3]: axit photphomolipđic. Trong poliaxit dị t hể có sự kết hợp các gốc axit của các nguyên tố kim loại và phi kim. Về hình thức, có thể coi các poliaxit đồng thể và dị thể là sản phẩm kết hợp các phân tử axit với anhiđrit của nó hoặc với anhiđrit của mộ t axit khác. Hai ví dụ nêu trên được coi là H4SiO4.SiO2 và H3PO4.MoO3. Các axit đicromic H2CrO4.CrO3 (H2Cr2O7) và axit tricromic H2CrO4.Cr2O3 (H2Cr3O7) thuộc loại các poliaxit đồng thể. Các poliaxit đồng và dị thể và các muố i của chúng được sử dụng nhiều trong hoá học phân tích.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2