intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Hướng dẫn giải bài 53,54,55,56,57,58,59,60 trang 89,90 SGK Toán 9 tập 2

Chia sẻ: Chac Van00 | Ngày: | Loại File: PDF | Số trang:8

205
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tóm tắt lý thuyết tứ giác nội tiếp và hướng dẫn giải bài 53,54,55,56,57,58,59,60 trang 89,90 SGK Toán 9 tập 2 sẽ giúp các em ôn tập, biết định nghĩa tứ giác nội tiếp, tính chất về góc của tứ giác nội tiếp, kỹ năng sử dụng được tính chất của tứ giác nội tiếp trong làm toán và thực hành. Mời các em cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Hướng dẫn giải bài 53,54,55,56,57,58,59,60 trang 89,90 SGK Toán 9 tập 2

Dưới đây là phần hướng dẫn giải bài tập được trích ra từ tài liệu “Hướng dẫn giải bài 53,54,55,56,57,58,59,60 trang 89,90 SGK Toán 9 tập 2: Tứ giác nội tiếp”, mời các em cùng tham khảo. Ngoài ra, các em có thể xem lại bài tập "Hướng dẫn giải bài 44,45,46,47,48,49,50,51,52 trang 86,87 SGK Toán 9 tập 2"

Hướng dẫn giải bài tập trong SGK Bài Góc nội tiếp Toán 9 tập 2 phần hình học trang 89,90

Bài 53 trang 89 SGK Toán 9 tập 2 – Hình học

Biết ABCD là tứ giác nội tiếp. Hãy điền vào ô trống trong bẳng sau (nếu có thể):

bai-53-trang-89-hinh-9-tap-2

Đáp án và hướng dẫn giải bài 53:

– Trường hợp 1:

Ta có ∠A + ∠C = 180o => ∠C = 180o – ∠A= 180o – 80o = 100o

∠B + ∠D = 180o => ∠D = 180o – ∠B= 180o – 70o = 110o

Vậy điểm ∠C =100o , ∠D = 110o

– Trường hợp 2:

∠A + ∠C = 180o => ∠A = 180o – ∠C = 180o – 105o = 75o

∠B + ∠D = 180o => ∠B = 180o – ∠D= 180o – 75o = 105o

– Trường hợp 3:

∠A + ∠C = 180o => ∠C = 180o – ∠A = 180o – 60o = 120o

∠B + ∠D = 180o => Chẳng hạn chọn ∠B = 70o ; ∠D= 110o

– Trường hợp 4: ∠D = 180o – ∠B= 180o – 40o = 140o

Còn lại ∠A + ∠C = 180o Chẳng hạn chọn ∠A = 100o ,∠B = 80o

– Trường hợp 5: ∠A = 180o – ∠C = 180o – 74o = 106o

∠B = 180o – ∠D = 180o – 65o = 115o

– Trường hợp 6: ∠C = 180o – ∠A = 180o – 95o = 85o

∠CB= 180o – ∠D = 180o – 98o = 82o

Vậy điền vào ô trống ta được bảng sau:

dap-an-bai-53-trang-89-hinh-9-tap-2


Bài 54 trang 89 SGK Toán 9 tập 2 – Hình học

Tứ giác ABCD có ∠ABC + ∠ADC = 180o. Chứng minh rằng các đường trung trực của AC, BD, AB cùng đi qua một điểm.

Đáp án và hướng dẫn giải bài 54:

bai54

Ta có Tứ giác ABCD có tổng hai góc đối diện bằng 180o (∠ABC + ∠ADC = 180o)nên nội tiếp đường tròn tâm O, ta có

⇒ OA = OB = OC = OD = bán kính (O)

⇒ O thuộc các đường trung trực của AC, BD, AB

Vậy các đường đường trung trực của AB, BD, AB cùng đi qua O.


Bài 55 trang 89 SGK Toán 9 tập 2 – Hình học

Cho ABCD là một tứ giác nội tiếp đường tròn tâm M, biết ∠DAB = 80o, ∠DAM = 30o, ∠BMC = 70o.

Hãy tính số đo các góc ∠MAB, ∠BCM, ∠AMB, ∠DMC, ∠AMD, ∠MCD
và ∠BCD.

Đáp án và hướng dẫn giải bài 55:

bai55

Ta có: ∠MAB=∠DAB – ∠DAM = 80o – 30o = 50o (1)

– ∆MBC là tam giác cân (MB= MC) nên ∠BCM =( 180o – 70o )/2 = 55o (2)

– ∆MAB là tam giác cân (MA=MB) nên ∠MAB = 50o (theo (1))

Vậy ∠AMB = 180o – 2. 50o = 80o

∠BAD =1/2 sđBCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđBCD = 2 ∠BAD = 2. 80o = 160o

Mà sđBC = ∠BMC = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ BD)

Suy ra ∠DMC = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra ∠AMD = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và ∠DMC = 90o

Suy ra ∠MCD = ∠MDC = 45o (6)

∠BCD = 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD.


Bài 56 trang 89 SGK Toán 9 tập 2 – Hình học

Xem hình 47. Hãy tìm số đo các góc của tứ giác ABCD

bai-56

Đáp án và hướng dẫn giải bài 56:

Tam giác ABF có ∠A + ∠B + ∠F = 1800

⇔ ∠A = 1800 – ∠B – ∠F

=1800 – ∠B -200 = 160 – ∠B (1)

Tam giác ADE có ∠A + ∠D + ∠E = 1800

⇔ ∠A = 1800 – ∠D – ∠E = 1800 – ∠D – 400 =1400 -∠D (2)

Công (1) và (2) ta có 2∠A = 1600 – ∠B + 1400 – ∠D = 3000 – (∠B +∠D)

Mà (∠B +∠D) = 1800 nên 2∠A =3000 – 1800 = 1200 ⇔ ∠A =600

Từ (1) ⇒ ∠B = 1600 – ∠A = 1600 – 600 = 1000

Từ (2) ⇒ ∠D = 1400 – ∠A = 1400 – 600 = 800

Ngoài ra ∠A + ∠C = 1800 nên ∠C = 1800 – ∠A = 1800 – 600 = 1200


Bài 57 trang 89 SGK Toán 9 tập 2 – Hình học

Trong các hình sau, hình nào nội tiếp được một đường tròn:

Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân ? Vì sao?

Đáp án và Hướng dẫn giải bài 57:

Hình bình hành nói chung không nội tiếp được đường tròn vì tổng hai góc đối diện không bằng 180o.Trường hợp riêng của hình bình hành là hình chữ nhật (hay hình vuông) thì nội tiếp đường tròn vì tổng hai góc đối diện là 90o + 90o = 180o

Hình thang nói chung, hình thang vuông không nội tiếp được đường tròn.

Hình thang cân ABCD (BC= AD) có hai góc ở mỗi đáy bằng nhau ∠A = ∠B, ∠C = ∠D; mà ∠A + ∠D = 180o (hai góc trong cùng phía tạo bởi cát tuyến AD với AB// CD),suy ra ∠A + ∠C = 180o . Vậy hình thang cân luôn có tổng hai góc đối diện bằng 180o nên nội tiếp được đường tròn.


Bài 58 trang 90 SGK Toán 9 tập 2 – Hình học

Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC và ∠DCB =1/2∠ACB.

a) Chứng minh ABDC là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm A, B, D, C.

Đáp án và Hướng dẫn giải:

bai58

a) Theo giả thiết, ∠DCB = 1/2 ∠ACB = 1/2. .60o = 30o

∠ACD = ∠ACB + ∠BCD (tia CB nằm giữa hai tia CA, CD)

=> ∠ACD = 60o + 30o = 90o (1)

Do DB = CD nên ∆BDC cân => ∠DBC = ∠DCB = 30o

Từ đó ∠ABD = 60o + 30o = 90o (2)

Từ (1) và (2) có ∠ACD + ∠ABD = 180o nên tứ giác ABDC nội tiếp được.

b) Vì ∠ABD = 90o nên ∠ABD là góc nội tiếp chăn nửa đường tròn đường kính AD, tâm O là trung điểm của AD.
Tương tự ∠ACD = 90o, nên ∠ACD là góc nội tiếp chắn nửa đường tròn đường kính AD.
Vậy tứ giác ABCD nội tiếp trong đường tròn đường kính AD với tâm O là trung điểm của AD.


Bài 59 trang 90 SGK Toán 9 tập 2 – Hình học

Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD

Đáp án và Hướng dẫn giải bài 59:

Do tứ giác ABCP nội tiếp nên ta có: ∠BAP + ∠BCP = 180o (1)

Ta lại có: ∠ABC + ∠BCP = 180o (2) (hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: ∠BAP = ∠ABC Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.


Bài 60 trang 90 SGK Toán 9 tập 2 – Hình học

bai-60-hinh-48

Xem hình 48. Chứng minh QR // ST.

Đáp án và hướng dẫn giải bài 60:

Ta có tứ giác ISTM nội tiếp đường tròn nên: ∠S1 + ∠M = 180o

Mà ∠M1 + ∠M3 = 180o (kề bù)

nên suy ra ∠S1 = ∠M3 (1)

Tương tự từ các tứ giác nội tiếp IMPN và INQS ta được

∠M3 = ∠N4 (2)

∠N4 = ∠R2 (3)

Từ (1), (2), (3) suy ra do đó QR // ST.

Các em vui lòng đăng nhập website tailieu.vn để download “Hướng dẫn giải bài 53,54,55,56,57,58,59,60 trang 89,90 SGK Toán 9 tập 2: Tứ giác nội tiếp” về máy tham khảo nội dung một cách đầy đủ hơn. Bên cạnh đó, các em có thể xem cách giải bài tập tiếp theo "Hướng dẫn giải 61,62,63,64 trang 91,92 SGK Toán 9 tập 2"

ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2