luận văn: NGHIÊN CỨU MỘT SỐ KỸ THUẬT LẤY TIN TỰ ĐỘNG TRÊN INTERNET
lượt xem 35
download
Sự phát triển nhanh chóng của mạng Internet đã sinh ra một khối lượng khổng lồ các dữ liệu dạng siêu văn bản (dữ liệu Web). Các tài liệu siêu văn bản chứa đựng văn bản và thường nhúng các liên kết đến các tài liệu khác phân bố trên Web. Ngày nay, Web bao gồm hàng tỉ tài liệu của hàng triệu tác giả được tạo ra và được phân tán qua hàng triệu máy tính được kết nối qua đường dây điện thoại, cáp quang, sóng radio......
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: luận văn: NGHIÊN CỨU MỘT SỐ KỸ THUẬT LẤY TIN TỰ ĐỘNG TRÊN INTERNET
- ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN ------------------------ TRƯƠNG MẠNH HÀ NGHIÊN CỨU MỘT SỐ KỸ THUẬT LẤY TIN TỰ ĐỘNG TRÊN INTERNET Chuyên ngành: Khoa học máy tính Mã số: 60.48.01 LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN Người hướng dẫn khoa học: TS. Phạm Việt Bình Thái Nguyên - Năm 2009
- LỜI CAM ĐOAN Tôi xin cam đoan toàn bộ nội dung bản luận văn này là do tôi tự sưu tầm, tra cứu và sắp xếp cho phù hợp với nội dung yêu cầu của đề tài. Nội dung luận văn này chưa từng được công bố hay xuất bản dưới bất kỳ hình thức nào và cũng không được sao chép từ bất kỳ một công trình nghiên cứu nào. Tất cả phần mã nguồn của chương trình đều do tôi tự thiết kế và xây dựng, trong đó có sử dụng một số thư viện chuẩn và các thuật toán được các tác giả xuất bản công khai và miễn phí trên mạng Internet. Nếu sai tôi xin tôi xin hoàn toàn chịu trách nhiệm. Thái Nguyên, ngày 11 tháng 11 năm 2009 Người cam đoan Trương Mạnh Hà
- MỞ ĐẦU Sự phát triển nhanh chóng của mạng Internet đã sinh ra một khối lượng khổng lồ các dữ liệu dạng siêu văn bản (dữ liệu Web). Các tài liệu siêu văn bản chứa đựng văn bản và thường nhúng các liên kết đến các tài liệu khác phân bố trên Web. Ngày nay, Web bao gồm hàng tỉ tài liệu của hàng triệu tác giả được tạo ra và được phân tán qua hàng triệu máy tính được kết nối qua đường dây điện thoại, cáp quang, sóng radio... Web đang ngày càng được sử dụng phổ biến trong nhiều lĩnh vực như báo chí, phát thanh, truyền hình, hệ thống bưu điện, trường học, các tổ chức thương mại, chính phủ ... Chính vì vậy lĩnh vực Web mining hay tìm kiếm tự động các thông tin phù hợp và có giá trị trên Web là một chủ đề quan trọng trong Data Mining và là vấn đề quan trọng của mỗi đơn vị, tổ chức có nhu cầu thu thập và tìm kiếm thông tin trên Internet [2]. Các hệ thống tìm kiếm thông tin hay nói ngắn gọn là các máy tìm kiếm Web thông thường trả lại một danh sách các tài liệu được phân hạng mà người dùng sẽ phải tốn công chọn lọc trong một danh sách rất dài để có được những tài liệu phù hợp. Ngoài ra các thông tin đó thường rất phong phú, đa dạng và liên quan đến nhiều đối tượng khác nhau. Điều này tạo nên sự nhập nhằng gây khó khăn cho người sự dụng trong việc lấy được các thông tin cần thiết. Có nhiều hướng tiếp cận khác nhau để giải quyết vấn đề này, các hướng này thường chú ý giảm sự nhập nhằng bằng các phương pháp lọc hay thêm các tùy chọn để cắt bớt thông tin và hướng biểu diễn các thông tin trả về bởi các máy tìm kiếm thành từng cụm để cho người dùng có thể dễ dàng tìm được thông tin mà họ cần. Đã có nhiều thuật toán phân cụm tài liệu dựa trên phân cụm ngoại tuyến toàn bộ tập tài liệu. Tuy nhiên việc tập hợp tài liệu của các máy tìm kiếm là quá lớn và luôn thay đổi để có thể phân cụm ngoại tuyến. Do 1
- đó, việc phân cụm phải được ứng dụng trên tập các tài liệu nhỏ hơn được trả về từ các truy vấn và thay vì trả về một danh sách rất dài các thông tin gây nhập nhằng cho người sử dụng cần có một phương pháp tổ chức lại các kết quả tìm kiếm một cách hợp lý. Do những vấn đề cấp thiết được đề cập ở trên nên em chọn đề tài: "Nghiên cứu một số kỹ thuật lấy tin tự động trên internet" Mục tiêu của đề tài: Nghiên cứu xây dựng giải pháp phát triển hệ thống phần mềm thu thập, đánh giá và phân cụm thông tin tự động trên Internet phục vụ cho việc nghiên cứu, học tập, giảng dạy. Ngoài phần mở đầu, phần kết luận, mục lục, tài liệu tham khảo, phụ lục, luận văn gồm 3 chương: - Chương 1: Khái quát về khai phá dữ liệu và phân cụm tài liệu Web Giới thiệu một số khái niệm cơ bản về khai phá dữ liệu, khai phá dữ liệu web, các hướng tiếp cận, ứng dụng của khai phá dữ liệu, và nêu bài toàn phân cụm tài liệu Web. - Chương 2: Một số thuật toán phân cụm tài liệu Nghiên cứu một số kỹ thuật phân cụm tài liệu liên quan, tư tưởng của các thuật toán đã được nghiên cứu, nghiên cứu đề xuất phương pháp cải tiến. - Chương 3: Ứng dụng trong lấy tin tự động Ứng dụng xây dựng bài toán Thu thập dữ liệu về Kinh tế trên Internet. Để hoàn thành được luận văn Cao học, em xin được gửi lời cảm ơn tới các thầy trong Viện Công nghệ thông tin, các thầy trong Khoa Công nghệ thông tin đã tận tình giảng dạy, cung cấp nguồn kiến thức quý giá trong suốt quá trình học tập. Đặc biệt em xin chân thành cảm ơn TS. Phạm Việt Bình, đã tận tình hướng dẫn, góp ý, tạo điều kiện cho em hoàn thành luận văn này. 2
- Xin chân thành cảm ơn các thầy cô, anh chị em đang công tác tại phòng VRLAB - Viện công nghệ thông tin - Viện khoa học và Công nghệ Việt Nam, các thầy cô đang công tác tại Viện Công nghệ thông tin - Viện khoa học và Công nghệ Việt Nam. Cảm ơn đồng nghiệp Đỗ Văn Đại đã cung cấp những tài liệu, cùng những kinh nghiệm quý báu đã được làm trong cuốn Đồ án tốt nghiệp đại học của đồng nghiệp Đỗ Văn Đại giúp cho em trong quá trình nghiên cứu giảm bớt được những khó khăn trong việc tiếp cận vấn đề và nghiên cứu tài liệu. Xin được cảm ơn Ban lãnh đạo Khoa Công nghệ thông tin - Đại học Thái Nguyên, lãnh đạo phòng Công nghệ thông tin - Thư viện, cùng toàn thể các đồng nghiệp trong Khoa Công nghệ thông tin - Đại học Thái Nguyên đã giúp đỡ em về thời gian, vật chất và tinh thần giúp em hoàn thành tốt nhiệm vụ học tập, công tác. 3
- Chương 1: KHÁI QUÁT VỀ KHAI PHÁ DỮ LIỆU VÀ PHÂN CỤM TÀI LIỆU WEB 1.1 Khai phá dữ liệu: Trong thời đại ngày nay, với sự phát triển vượt bậc của công nghệ thông tin, các hệ thống thông tin có thể lưu trữ một khối lượng lớn dữ liệu về hoạt động hàng ngày. Từ khối dữ liệu này, các kỹ thuật trong Khai phá dữ liệu và Máy học có thể dùng để trích xuất những thông tin hữu ích mà chúng ta chưa biết. Các tri thức vừa học được có thể vận dụng để cải thiện hiệu quả hoạt động của hệ thống thông tin ban đầu. Giáo sư Tom Mitchell đã đưa ra định nghĩa của Khai phá dữ liệu như sau: “Khai phá dữ liệu là việc sử dụng dữ liệu lịch sử để khám phá những qui tắc và cải thiện những quyết định trong tương lai.” Với một cách tiếp cận ứng dụng hơn, Tiến sĩ Fayyad đã phát biểu: “Khai phá dữ liệu, thường được xem là việc khám phá tri thức trong các cơ sở dữ liệu, là một quá trình trích xuất những thông tin ẩn, trước đây chưa biết và có khả năng hữu ích, dưới dạng các qui luật, ràng buộc, qui tắc trong cơ sở dữ liệu”. Nói tóm lại, Khai phá dữ liệu là một quá trình học tri thức mới từ những dữ liệu đã thu thập được [4]. Mô hình khai phá dữ liệu bao gồm năm giai đoạn chính: - Tìm hiểu nghiệp vụ và dữ liệu - Chuẩn bị dữ liệu - Mô hình hoá dữ liệu - Hậu xử lý và đánh giá mô hình - Triển khai tri thức 4
- Quá trình này có thể được lặp lại nhiều lần một hay nhiều giai đoạn dựa trên phản hồi từ kết quả của các giai đoạn sau. Tham gia chính trong quá trình Khai phá dữ liệu là các nhà tư vấn và phát triển chuyên nghiệp trong lĩnh vực Khai phá dữ liệu. Trong giai đoạn đầu tiên, tìm hiểu nghiệp vụ dữ liệu, nhà tư vấn nghiên cứu kiến thức về lĩnh vực sẽ áp dụng, bao gồm các tri thức cấu trúc về hệ thống và tri thức, các nguồn dữ liệu hiện hữu, ý nghĩa, vai trò và tầm quan trọng của các thực thể dữ liệu. Việc nghiên cứu này được thực hiện qua việc tiếp xúc giữa nhà từ vấn và người dùng. Khác với phương pháp giải quyết vấn đề truyền thống khi bài toán được xác định chính xác ở bước đầu tiên, nhà tư vấn tìm hiểu các yêu cầu sơ khởi của người dùng và đề nghị các bài toán tiềm năng có thể giải quyết với nguồn dữ liệu hiện hữu. Tập các bài toán tiềm năng được tinh chỉnh và làm hẹp lại trong các giai đoạn sau. Các nguồn và đặc tả dữ liệu có liên quan đến tập các bài toán tiềm năng cũng được xác định [4]. Giai đoạn chuẩn bị dữ liệu sử dụng các kỹ thuật tiền xử lý để biến đổi và cải thiện chất lượng dữ liệu để thích hợp với những yêu cầu của các giải thuật học. Phần lớn các giải thuật khai phá dữ liệu hiện nay chỉ làm việc trên một tập dữ liệu đơn và phẳng, do đó dữ liệu phải được trích xuất và biến đối từ các dạng cơ sơ dữ liệu phân bố, quan hệ hay hướng đối tượng sang dạng cơ sở dữ liệu quan hệ đơn giản với một bảng dữ liệu. Các giải thuật tiền xử lý tiêu biểu bao gồm: (a) Xử lý dữ liệu bị thiếu/mất: các dữ liệu bị thiếu sẽ được thay thế bởi các giá trị thích hợp. (b) Khử sự trùng lắp: các đối tượng dữ liệu trùng lắp sẽ bị loại bỏ đi. Kỹ thuật này không được sử dụng cho các tác vụ có quan tâm đến phân bố dữ liệu. 5
- (c) Giảm nhiễu: nhiễu và các đối tượng tách rời (outlier) khỏi phân bố chung sẽ bị loại đi khỏi dữ liệu. (d) Chuẩn hóa: miền giá trị của dữ liệu sẽ được chuẩn hóa. (e) Rời rạc hóa: các dữ liệu số sẽ được biến đổi ra các giá trị rời rạc. (f) Rút trích và xây dựng đặc trưng mới từ các thuộc tính đã có. (g) Giảm chiều: các thuộc tính chứa ít thông tin sẽ được loại bỏ bớt. Các bài toán được giải quyết trong giai đoạn Mô hình hóa dữ liệu. Các giải thuật học sử dụng các dữ liệu đã được tiền xử lý trong giai đoạn hai để tìm kiếm các qui tắc ẩn và chưa biết. Công việc quan trọng nhất trong giai đoạn này là lựa chọn kỹ thuật phù hợp để giải quyết các vấn đề đặt ra. Các bài toán được phân loại vào một trong những nhóm bài toán chính trong Khai phá dữ liệu dựa trên đặc tả của chúng [4]. Các mô hình kết quả của giai đoạn ba sẽ được hậu xử lý và đánh giá trong giai đoạn (d). Dựa trên các đánh giá của người dùng sau khi kiểm tra trên các tập thử, các mô hình sẽ được tinh chỉnh và kết hợp lại nếu cần. Chỉ các mô hình đạt được mức yêu cầu cơ bản của người dùng mới đưa ra triển khai trong thực tế. Trong giai đoạn này, các kết quả được biến đổi từ dạng học thuật sang dạng phù hợp với nghiệp vụ và dễ hiểu hơn cho người dùng. Trong giai đoạn cuối, Triển khai tri thức, các mô hình được đưa vào những hệ thống thông tin thực tế dưới dạng các module hỗ trợ việc đưa ra quyết định. Mối quan hệ chặt chẽ giữa các giai đoạn trong quá trình Khai phá dữ liệu là rất quan trọng cho việc nghiên cứu trong Khai phá dữ liệu [3]. Một giải thuật trong Khai phá dữ liệu không thể được phát triển độc lập, không quan tâm đến bối cảnh áp dụng mà thường được xây dựng để giải quyết một mục tiêu cụ thể. Do đó, sự hiểu biết bối cảnh vận dụng là rất cần thiết. Thêm vào 6
- đó, các kỹ thuật được sử dụng trong các giai đoạn trước có thể ảnh hưởng đến hiệu quả của các giải thuật sử dụng trong các giai đoạn tiếp theo. 1.1.1 Các dạng dữ liệu 1.1.1.1 Full text Dữ liệu dạng Full text là một dạng dữ liệu phi cấu trúc với thông tin chỉ gồm các tài liệu dạng text. Mỗi tài liệu chứa thông tin về một vấn đề nào đó thể hiện qua nội dung của tất cả các từ cấu thành tài liệu đó. Ý nghĩa của mỗi từ trong tài liệu không cố định mà tùy thuộc vào từng ngữ cảnh khác nhau sẽ mang ý nghĩa khác nhau. Các từ trong tài liệu được liên kết với nhau theo một ngôn ngữ nào đó. Trong các dữ liệu hiện nay thì văn bản là một trong những dữ liệu phổ biến nhất, nó có mặt khắp mọi nơi và chúng ta thường xuyên bắt gặp do đó các bài toán về xử lý văn bản đã được đặt ra khá lâu và hiện nay vẫn là một trong những vấn đề trong khai phá dữ liệu Text, trong đó có những bài toán đáng chú ý như tìm kiếm văn bản, phân loại văn bản, phân cụm văn bản hoặc dẫn đường văn bản. Cơ sở dữ liệu Full text là một dạng cơ sở dữ liệu phi cấu trúc mà dữ liệu bao gồm các tài liệu và thuộc tính của tài liệu. Cơ sở dữ liệu Full_Text thường được tổ chức như một tổ hợp của hai thành phần: Một cơ sở dữ liệu có cấu trúc thông thường (chứa đặc điểm của các tài liệu) và các tài liệu. 1.1.1.2 Hypertext Theo từ điển của Đại Học Oxford (Oxford English Dictionary Additions Series) thì Hypertext được định nghĩa như sau: Đó là loại Text không phải đọc theo dạng liên tục đơn, nó có thể được đọc theo các thứ tự khác nhau, đặc biệt là Text và ảnh đồ họa (Graphic) là các dạng có mối liên kết với nhau theo 7
- cách mà người đọc có thể không cần đọc một cách liên tục. Ví dụ khi đọc một cuốn sách người đọc không phải đọc lần lượt từng trang từ đầu đến cuối mà có thể nhảy cóc đến các đoạn sau để tham khảo về các vấn đề họ quan tâm. Như vậy văn bản Hypertext bao gồm dạng chữ viết không liên tục, chúng được phân nhánh và cho phép người đọc có thể chọn cách đọc theo ý muốn của mình. Hiểu theo nghĩa thông thường thì Hypertext là một tập các trang chữ viết được kết nối với nhau bởi các liên kết và cho phép người đọc có thể đọc theo các cách khác nhau. Như ta đã làm quen nhiều với các trang định dạng HTML, trong các trang có những liên kết trỏ tới từng phần khác nhau của trang đó hoặc trỏ tới trang khác và người đọc sẽ đọc văn bản dựa vào những liên kết đó. Bên cạnh đó, Hypertext cũng là một dạng văn bản Text đặc biệt nên cũng có thể bao gồm các chữ viết liên tục (là dạng phổ biến nhất của chữ viết). Do không bị hạn chế bởi tính liên tục trong Hypertext, chúng ta có thể tạo ra các dạng trình bày mới, do đó tài liệu sẽ phản ánh tốt hơn nội dung muốn diễn đạt. Hơn nữa người đọc có thể chọn cho mình một cách đọc phù hợp chẳng hạn như đi sâu vào một vấn đề mà họ quan tâm. Sáng kiến tạo ra một tập các văn bản cùng với các con trỏ tới các văn bản khác để liên kết một tập các văn bản có mối quan hệ với nhau là một cách thực sự hay và hữu ích để tổ chức thông tin. Với người viết, cách này cho phép họ có thể thoải mái loại bỏ những băn khoăn về thứ tự trình bày mà có thể tổ chức vấn đề thành những phần nhỏ rồi sử dụng kết nối để chỉ ra mối liên hệ giữa các phần nhỏ đó với nhau. Với người đọc, cách này cho phép họ có thể đi tắt trên mạng thông tin và quyết định phần thông tin nào có liên quan đến vấn đề mà họ quan tâm để tiếp tục tìm hiểu. So sánh với cách đọc tuyến tính tức là đọc lần lượt thì Hypertext đã cung cấp cho chúng ta một giao diện để có thể tiếp xúc với nội dung thông 8
- tin hiệu quả hơn rất nhiều. Theo khía cạnh của các thuật toán học máy thì Hypertext đã cung cấp cho chúng ta cơ hội nhìn ra ngoài phạm vi một tài liệu để đánh giá nó, nghĩa là có tính cả đến các tài liệu có liên kết với nó. Tất nhiên không phải tất cả các tài liệu có liên kết đến nó đều có ích cho việc đánh giá, đặc biệt là khi các siêu liên kết có thể chỉ đến nhiều loại các tài liệu khác nhau. Có hai khái niệm về Hypertext cần quan tâm: Hypertext Document (Tài liệu siêu văn bản): Là một tài liệu văn bản đơn trong hệ thống siêu văn bản. Nếu tưởng tượng hệ thống siêu văn bản là một đồ thị thì các tài liệu tương ứng các nút. Hypertext Link (Liên kết siêu văn bản): Là một tham chiếu để nối một tài liệu Hypertext này với một tài liệu Hypertext khác. Các siêu liên kết đóng vai trò quan trọng như những đường nối trong đô thị nói trên. Hypertext là loại dữ liệu phổ biến hiện nay và cũng là loại dữ liệu có nhu cầu tìm kiếm rất lớn. Nó là dữ liệu phổ biến trên mạng thông tin Internet cơ sở dữ liệu Hypertext với văn bản dạng “ mửa cấu trúc” do xuất hiện thêm các “thẻ ”: Thẻ cấu trúc (tiêu đề, mở đầu, nội dung), thẻ nhấn trình bày chữ (đậm, nghiêng,..). Nhờ các thẻ này mà chúng ta có thêm một tiêu chuẩn (so với tài liệu Full text) để có thể tìm kiếm và phân loại chúng. Dựa vào các thẻ đã quy định trước chúng ta có thể phân thành các độ ưu tiên khác nhau cho các từ khóa nếu chúng xuất hiện ở những vị trí khác nhau. Ví dụ khi tìm kiếm các tài liệu có nội dung liên quan đến “people ” thì chúng ta đưa từ khóa tìm kiếm là “people ” và các tài liệu có từ khóa “people ” đứng ở tiêu đề thì sẽ gần với yêu cầu tìm kiếm hơn. 1.1.2 Các bài toán thông dụng trong Khai phá dữ liệu Trong Khai phá dữ liệu, các bài toán có thể phân thành bốn loại chính. 9
- Bài toán thông dụng nhất trong Khai phá dữ liệu là Phân lớp (Classification). Với một tập các dữ liệu huấn luyện cho trước và sự huấn luyện của con người, các giải thuật phân loại sẽ học ra bộ phân loại (classifier) dùng để phân các dữ liệu mới vào một trong những lớp (còn gọi là loại) đã được xác định trước. Nhận dạng cũng là một bài toán thuộc kiểu phân loại. Với mô hình học tương tự như bài toán Phân loại, lớp bài toán Dự đoán (Prediction) sẽ học ra các bộ dự đoán. Khi có dữ liệu mới đến, bộ dự đoán sẽ dựa trên thông tin đang có để đưa ra một giá trị số học cho hàm cần dự đoán. Bài toán tiêu biểu trong nhóm này là dự đoán giá sản phẩm để lập kế hoạch trong kinh doanh. Các giải thuật Tìm luật liên kết (Association Rule) tìm kiếm các mối liên kết giữa các phần tử dữ liệu, ví dụ như nhóm các món hàng thường được mua kèm với nhau trong siêu thị. Các kỹ thuật Phân cụm (Clustering) sẽ nhóm các đối tượng dữ liệu có tính chất giống nhau vào cùng một nhóm. Có nhiều cách tiếp cận với những mục tiêu khác nhau trong phân loại. Các kỹ thuật trong bài toán này thường được vận dụng trong vấn đề phân hoạch dữ liệu tiếp thị hay khảo sát sơ bộ các dữ liệu. 1.1.3 Các môi trường khai phá dữ liệu Do các đặc tính được nêu ra trong phần 2, các công cụ Khai phá dữ liệu thường được xây dựng theo dạng môi trường phát triển, dễ thử nghiệm và thay đổi các tác vụ Khai phá dữ liệu. Hình 1.1 giới thiệu giao diện trực quan của một quá trình Khai phá dữ liệu trong môi trường Clementine [4]. 10
- Hình 1.1: Giao diện trực quan của môi trường khai phá dữ liệu Clementine Trong các môi trường này, một quá trình Khai phá dữ liệu được mô tả như một dòng các tác vụ nối tiếp, bắt đầu bằng việc lấy dữ liệu thực từ nguồn dữ liệu lịch sử, thao tác biến đổi dữ liệu sang dạng thích hợp, học và sinh ra mô hình mới. Mô hình này sau đó được thử nghiệm trên dữ liệu thực để đưa ra các đánh giá. Nếu mô hình được đánh giá chưa thỏa mãn các yêu cầu đề ra, các tác vụ trong quá trình được tinh chỉnh rồi thực hiện lại. Qui trình này được lặp lại cho đến khi nào mô hình sinh ra được đánh giá có hiệu quả tốt. Mô hình sinh ra cuối cùng sẽ được triển khai sử dụng trong thực tế. Các môi trường như vậy rất phù hợp cho quá trình Khai phá dữ liệu vì tính chất thử nghiệm và cần thay đổi nhiều của nó. Việc sử dụng các môi trường thử nghiệm đã thúc đẩy nhanh việc áp dụng Khai phá dữ liệu. Thay vì phải bỏ nhiều công sức và thời gian vào việc xây dựng các chương trình hoàn chỉnh và hiện thực các giải thuật, khi dữ liệu 11
- sẵn sàng cho việc sử dụng, người vận dụng Khai phá dữ liệu chỉ cần phải tìm hiểu các kiến thức cần thiết, khảo sát tính chất dữ liệu, vận dụng các kỹ thuật đã được hiện thực sẵn trên dữ liệu, đánh giá các kết quả tạm thời và vận dụng kết quả cuối cùng. Với phương thức hiện đại như vậy, việc áp dụng Khai phá dữ liệu trở nên rất dễ dàng và tiện lợi. Weka là môi trường thử nghiệm Khai phá dữ liệu do các nhà khoa học thuộc trường Đại học Waitako, NZ, khởi xướng và được sự đóng góp của rất nhiều nhà nghiên cứu trên thế giới. Weka là phần mềm mã nguồn mở, cung cấp công cụ trực quan và sinh động cho sinh viên và người ngoài ngành Công nghệ thông tin tìm hiểu về Khai phá dữ liệu. Weka còn cho phép các giải thuật học mới phát triển có thể tích hợp vào môi trường của nó. 1.1.4 Các ứng dụng của khai phá dữ liệu Khai phá dữ liệu được vận dụng trong nhiều lĩnh vực khác nhau nhằm khai thác nguồn dữ liệu phong phú được lưu trữ trong các hệ thống thông tin Tùy theo bản chất của từng lĩnh vực, việc vận dụng Khai phá dữ liệu có những cách tiếp cận khác nhau. Khai phá dữ liệu cũng được vận dụng hiệu quả để giải quyết các bài toán phức tạp trong các ngành đòi hỏi kỹ thuật cao như tìm kiếm mỏ dầu từ ảnh viễn thám, xác định các vùng gãy trong ảnh địa chất để dự đoán thiên tai, cảnh báo hỏng hóc trong các hệ thống sản xuất,… Các bài toán này đã được giải quyết từ khá lâu bằng các kỹ thuật nhận dạng hay xác suất nhưng được giải quyết với yêu cầu cao hơn bởi các kỹ thuật của Khai phá dữ liệu. Phân nhóm và dự đoán là những công cụ rất cần thiết cho việc qui hoạch và phát triển các hệ thống quản lý và sản xuất trong thực tế. Các kỹ thuật Khai phá dữ liệu đã được áp dụng thành công trong việc dự đoán tải sử dụng điện năng cho các công ty cung cấp điện, lưu lượng viễn thông cho các công ty điện thoại, mức độ tiêu thụ sản phẩm cho các nhà sản xuất, 12
- giá trị của sản phẩm trên thị trường cho các công ty tài chính hay phân nhóm các khách hàng tiềm năng,… Ngoài ra, Khai phá dữ liệu còn được áp dụng cho các vấn đề xã hội như phát hiện tội phạm hay tăng cường an ninh xã. Việc vận dụng thành công đã mang lại những hiệu quả thiết thực cho các hoạt động diễn ra hàng ngày trong đời sống. 1.2. Phân cụm tài liệu và phân cụm tài liệu Web Phân cụm (Clustering) là quá trình nhóm một tập các đối tượng vật lý hoặc trừu tượng thành các nhóm hay các lớp đối tượng tương tự nhau. Một cụm (cluster) là một tập các đối tượng giống nhau hay là tương tự nhau, chúng khác hoặc ít tương tự so với các đối tượng thuộc lớp khác. Không giống như quá trình phân loại, ta thường biết trước tính chất hay đặc điểm của các đối tượng trong cùng một lớp và dựa vào đó để ấn định một đối tượng vào lớp của nó, trong quá trình chia lớp ta không hề biết trước tính chất của các lớp và thường dựa vào mối quan hệ của các đối tượng để tìm ra sự giống nhau giữa các đối tượng dựa vào một độ đo nào đó đặc trưng cho mỗi lớp. Việc phân cụm không thực hiện độc lập mà thường sử dụng kết hợp với các phương pháp khác. Một cách phân cụm được đưa ra cũng phải có một phương pháp áp dụng trên các lớp đó để đưa ra được ý nghĩa của lớp đó. Ở một mức cơ bản nhất, người ta đã đưa ra định nghĩa Phân cụm dữ liệu như sau: "Phân cụm dữ liệu là một kỹ thuật trong DATA MINING, nhằm tìm kiếm, phát hiện các cụm, các mẫu dữ liệu tự nhiên tiềm ẩn, quan tâm trong tập dữ liệu lớn, từ đó cung cấp thông tin, tri thức hữu ích cho ra quyết định". Hiện nay có rất nhiều vấn đề nghiên cứu về phân cụm trong các lĩnh vực khác nhau như: Khai phá dữ liệu, thống kê, học máy, công nghệ dữ liệu 13
- không gian, sinh học... Do kích thước của các cơ sở dữ liệu tăng lên rất nhanh nên phân cụm đang là vấn đề đã và đang thu hút nhiều sự quan tâm của các nhà khoa học trên thế giới. Trong lĩnh vực thống kê, phân cụm đã được nghiên cứu và phát triển trong nhiều năm, các vấn đề tập trung chủ yếu vào phân tích các lớp dựa vào khoảng cách. Các công cụ phân tích lớp dựa trên một số các phương pháp như k-means, k-medoids đã được ứng dụng trong nhiều hệ thống phần mềm phân tích thống kê như: S-Plus, SPSS, SAS... Trong học máy, phân cụm dữ liệu được xem là vấn đề học không có giám sát, vì nó phải đi giải quyết vấn đề tìm một cấu trúc trong tập hợp các dữ liệu chưa biết trước các thông tin về lớp hay các thông tin về tập ví dụ huấn luyện. Trong nhiều trường hợp, khi phân lớp (Classification) được xem vấn đề học có giám sát thì phân cụm dữ liệu là một bước trong phân lớp dữ liệu, trong đó Phân cụm dữ liệu sẽ khởi tạo các lớp cho phân lớp bằng cách xác định các nhãn cho các nhóm dữ liệu. Trong lĩnh vực khai thác dữ liệu, các vấn đề nghiên cứu trong phân cụm chủ yếu tập trung vào tìm kiếm các phương pháp phân cụm hiệu quả và tin cậy trong cơ sở dữ liệu lớn. Trong lĩnh vực khai phá dữ liệu Web, phân cụm có thể khám phá ra các nhóm tài liệu quan trọng, có nhiều ý nghĩa trong môi trường Web. Các lớp tài liệu này trợ giúp cho việc khám phá tri thức từ dữ liệu... 1.2.1 Khai phá dữ liệu Web 1.2.1.1 Khai phá nội dung Web Khai phá nội dung web tập trung vào việc khám phá một cách tự động nguồn thông tin có giá trị trực tuyến. Khai phá nội dung web có thể được tiếp cận theo 2 cách khác nhau: Tìm kiếm thông tin và khai phá dữ liệu trong cơ 14
- sở dữ liệu lớn. Khai phá dữ liệu đa phương tiện là một phần của khai phá nội dung Web, nó hứa hẹn việc khai thác được các thông tin và tri thức ở mức cao từ nguồn đa phương tiện trực tuyến rộng lớn. 1.2.1.2 Khai phá văn bản Web Khai phá văn bản Web là việc sử dụng kỹ thuật khai phá dữ liệu đối với các tập văn bản để tìm ra tri thức có ý nghĩa tiềm ẩm trong nó [12]. Dữ liệu của nó có là dữ liệu có cấu trúc hoặc không cấu trúc. Kết quả khai phá không chỉ là trạng thái chung của mỗi tài liệu văn bản mà còn là sự phân loại, phân cụm các tập văn bản phục vụ cho mục đích nào đó. Hình 1.2: Quá trình khai phá văn bản Web - Lựa chọn dữ liệu: Về cơ bản, văn bản văn bản cục bộ được định dạng tích hợp thành các tài liệu theo mong muốn để khai phá và phân phối trong nhiều dịch vụ Web bằng việc sử dụng kỹ thuật truy xuất thông tin. - Tiền xử lý dữ liệu: Để có một kết quả khai phá tốt ta cần có dữ liệu rõ ràng, chính xác và xoá bỏ dữ liệu hỗn độn và dư thừa. Sau bước tiền xử lý, tập dữ liệu đạt được thường có các đặc điểm sau: + Dữ liệu thống nhất và hỗn hợp cưỡng bức. + Làm sạch dữ liệu không liên quan, nhiễu và dữ liệu rỗng. Dữ liệu không bị mất mát và không bị lặp. 15
- + Giảm bớt số chiều và làm tăng hiệu quả việc phát hiện tri thức bằng việc chuyển đổi, quy nạp, cưỡng bức dữ liệu... + Làm sạch các thuộc tính không liên quan để giảm bớt số chiều của dữ liệu. - Biểu diễn văn bản: Khai phá văn bản Web là khai phá các tập tài liệu HTML. Do đó ta sẽ phải biến đổi và biểu diễn dữ liệu thích hợp cho quá trình xử lý. Người ta thường dùng mô hình TF-IDF để vector hoá dữ liệu. Nhưng có một vấn đề quan trọng là việc biểu diễn này sẽ dẫn đến số chiều vector khá lớn. - Trích rút đặc trưng: Rút ra các đặc trưng là một phương pháp, nó có thể giải quyết số chiều vector đặc trưng lớn được mang lại bởi khai phá văn bản. Việc rút ra các đặc trưng dựa trên hàm trọng số: + Mỗi từ đặc trưng sẽ nhận được một giá trị trọng số tin cậy bằng việc tính toán hàm trọng số tin cậy. Tần số xuất hiện cao của các từ đặc trưng là khả năng chắc chắn nó sẽ phản ánh đến chủ đề của văn bản, thì ta sẽ gán cho nó một giá trị tin cậy lớn hơn. Hơn nữa, nếu nó là tiêu đề, từ khoá hoặc cụm từ thì chắc chắn nó có giá trị tin cậy lớn hơn. + Việc rút ra các đặc trưng dựa trên việc phân tích thành phần chính trong phân tích thông kê. Ý tưởng chính của phương pháp này là sử dụng thay thế từ đặc trưng bao hàm của một số ít các từ đặc trưng chính trong mô tả để thực hiện giảm bớt số chiều. - Sau khi tập hợp, lựa chọn và trích ra tập văn bản hình thành nên các đặc trưng cơ bản, nó sẽ là cơ sở để Khai phá dữ liệu. Từ đó ta có thể thực hiện trích, phân loại, phân cụm, phân tích và dự đoán. - Việc trích rút văn bản để đưa ra ý nghĩa chính có thể mô tả tóm tắt tài liệu văn bản trong quá trình tổng hợp. Sau đó, người dùng có thể hiểu ý nghĩa chính của văn bản nhưng không cần thiết phải duyệt toàn bộ văn bản. Đây là phương pháp đặc biệt được sử dụng trong searching engine, thường cần để 16
- đưa ra văn bản trích dẫn [10]. Nhiều searching engines luôn đưa ra những câu dự đoán trong quá trình tìm kiếm và trả về kết quả, cách tốt nhất để thu được ý nghĩa chính của một văn bản hoặc tập văn bản chủ yếu bằng việc sử dụng nhiều thuật toán khác nhau. - Phân lớp văn bản: Nhiều tài liệu được phân lớp tự động một cách nhanh chóng và hiệu quả cao. Người ta thường sử dụng phương pháp phân lớp Navie Bayesian và "K - láng giềng gần nhất" để khai phá thông tin văn bản. Trong phân lớp văn bản, đầu tiên là phân loại tài liệu. Thứ hai, xác định đặc trưng thông qua số lượng các đặc trưng của tập tài liệu huấn luyện. Cuối cùng, tính toán kiểm tra phân lớp tài liệu và độ tương tự của tài liệu phân lớp bằng thuật toán nào đó. Khi đó các tài liệu có độ tương tự cao với nhau thì nằm trong cùng một phân lớp. Độ tương tự sẽ được đo bằng hàm đánh giá xác định trước. Nếu ít tài liệu tương tự nhau thì đưa nó về 0. Nếu nó không giống với sự lựa chọn của phân lớp xác định trước thì xem như không phù hợp. - Phân cụm văn bản: Chủ đề phân loại không cần xác định trước nhưng ta phải phân loại các tài liệu vào nhiều cụm. Trong cùng một cụm thì độ tương tự thấp hơn. Phương pháp sắp xếp liên kết và phương pháp phân cấp thường được sử dụng trong văn bản phân cụm. - Phân tích và dự đoán xu hướng: Thông qua việc phân tích các tài liệu Web, ta có thể nhận được quan hệ phân phối của các dữ liệu đặc biệt trong từng giai đoạn của nó và có thể dự đoán được tương lai phát triển. - Đánh giá chất lượng mẫu: Khai phá dữ liệu Web có thể được xem như quá trình của machine learning. Kết quả của machine learning là các mẫu tri thức. Phần quan trọng của machine learning là đánh giá kết quả các mẫu. Ta thường phân lớp các tập tài liệu vào tập huấn luyện và tập kiểm tra. Cuối cùng, chất lượng trung bình được dung để đánh giá chất lượng mô hình. 17
- 1.2.2. Bài toán phân cụm tài liệu Web Nắm bắt những đặc tính của người dung Web là việc rất quan trọng đối với người thiết kế Website. Thông qua việc khai phá lịch sử các mẫu truy xuất của người dùng Web, không chỉ thông tin về Web được sử dụng như thế nào mà còn nhiều đặc tính khác như các hành vi của người dùng có thể được xác định. Sự điều hướng đường dẫn người dùng Web mang lại giá trị thông tin về mức độ quan tâm của người dùng đến các Website đó. Khai phá Web theo sử dụng Web là khai phá truy cập Web để khám phá các mẫu người dùng truy cập vào Website. Kiến trúc tổng quát của quá trình khai phá theo sử dụng Web như sau: Hình 1.3: Kiến trúc tổng quát của khai phá theo sử dụng Web - Các kỹ thuật được sử dụng trong khai phá sử dụng Web: + Luật kết hợp: Để tìm ra những Web thường được truy cập cùng nhau của người dùng, những lựa chọn cùng nhau của khách hàng trong thương mại điện tử. + Kỹ thuật phân cụm: Phân cụm người dùng dựa trên các mẫu duyệt để tìm ra sự liên quan giữa người dùng Web và các hành vi của họ. 18
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn: Nghiên cứu áp dụng 5S tạo môi trường làm việc hiệu quả tại các phòng ban chức năng của công ty cổ phần dịch vụ du lịch đường sắt Hà Nội
84 p | 324 | 91
-
Luận văn: Nghiên cứu một số yếu tố ảnh hưởng đến chất lượng và hiệu suất thu hồi rượu gạo sản xuất ở quy mô hộ gia đình
26 p | 277 | 62
-
luận văn “Nghiên cứu một số biện pháp nhằm thúc đẩy hoạt động tiêu thụ sản phẩm ở Xí nghiệp kính Long Giang”
56 p | 119 | 18
-
Luận văn Thạc sĩ: Nghiên cứu một số đặc điểm sinh học của đơn bào Histomonas meleagridis ký sinh trên gà
86 p | 115 | 13
-
Luận văn: Nghiên cứu một số kỹ thuật ước lượng độ dài thông điệp giấu trên Bit có trong số thấp
34 p | 112 | 12
-
LUẬN VĂN: Nghiên cứu một số biện pháp nhằm thúc đẩy hoạt động tiêu thụ sản phẩm ở Xí nghiệp kính Long Giang
51 p | 110 | 10
-
Luận văn Thạc sĩ Hệ thống thông tin: Nghiên cứu một số vấn đề đảm bảo chất lượng dịch vụ và chất lượng trải nghiệm cho mạng không dây
75 p | 18 | 7
-
Luận văn Thạc sĩ Sinh thái học: Nghiên cứu một số đặc điểm tái sinh của thảm thực vật rừng sau cháy tại huyện Hòa Vang, thành phố Đà Nẵng
95 p | 23 | 5
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số giải pháp bảo tồn đa dạng sinh học có sự tham gia ở khu bảo tồn thiên nhiên Phong Quang - tỉnh Hà Giang
156 p | 27 | 5
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số bệnh hại chủ yếu trên cây điều (Anacardium occidentale L.) trồng tại một số vùng trọng điểm thuộc tỉnh Đăk Lăk
106 p | 21 | 5
-
Luận văn Thạc sĩ Khoa học: Nghiên cứu một số tác động của thủy điện đến thành phần loài và phân bố của cá ở sông Tranh, huyện Bắc Trà My, tỉnh Quảng Nam
80 p | 13 | 4
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số cơ sở lý luận và thực tiễn của quy hoạch sử dụng đất cấp vi mô và tiến hành quy hoạch sử dụng đất nông lâm nghiệp bản Minh Châu, xã Châu Hạnh, huyện Quỳnh Châu, tỉnh Nghệ An
145 p | 22 | 4
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số đặc điểm sinh thái và sinh trưởng loài Xoan mộc (Toona Sureni (Bl) Merr) Ở Đăk Lăk
71 p | 24 | 4
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số đặc điểm cấu trúc cơ bản và xây dựng cơ sở khoa học cho điều tra trữ lượng rừng tự nhiên
70 p | 34 | 4
-
Luận văn Thạc sĩ Khoa học Lâm nghiệp: Nghiên cứu một số đặc điểm cấu trúc thảm thực vật rừng trên núi đá vôi tại một số địa phương ở Con Cuông, Nghệ An
92 p | 42 | 3
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu một số đặc điểm cấu trúc cơ bản của rừng tự nhiên ở vùng Tây Bắc
102 p | 26 | 3
-
Luận văn Thạc sĩ Sinh học thực nghiệm: Nghiên cứu một số điều kiện nuôi cấy chủng vi nấm sinh tổng hợp mycophenolic acid
75 p | 10 | 2
-
Luận văn Thạc sĩ Khoa học: Nghiên cứu một số vật liệu từ dựa trên các bon
55 p | 3 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn