Luận văn Thạc sĩ Vật lý: Giản đồ pha điện tử ở mô hình Falicov – Kimball với bất trật tự tuân theo phân bố Gauss
lượt xem 4
download
Luận văn tìm hiểu về chuyển pha kim loại – điện môi và định xứ Anderson, lý thuyết trường trung bình động và lý thuyết môi trường điển hình cho định xứ Anderson; xây dựng giản đồ pha điện tử ở FKM với bất trật tự tuân theo phân bố Gauss và so sánh với giản đồ pha ở trường hợp phân bố đều.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn Thạc sĩ Vật lý: Giản đồ pha điện tử ở mô hình Falicov – Kimball với bất trật tự tuân theo phân bố Gauss
- 1 MỤC LỤC Lời cam đoan Lời cảm ơn Danh mục các kí hiệu và chữ viết tắt Danh mục các hình vẽ, đồ thị Trang MỤC LỤC……………………………………………………………… 1 MỞ ĐẦU ……………………………………………………………... 2 CHƢƠNG 1. CHUYỂN PHA KIM LOẠI – ĐIỆN MÔI VÀ ĐỊNH XỨ ANDERSON……………………………………………………………. 4 1.1. Bức tranh vùng năng lƣợng…..………………………………… 4 1.2 Bức tranh chuyển pha kim loại – điện môi MOTT…..…………. 6 1.3. Định xứ Anderson….. ………………………………………….. 8 CHƢƠNG 2. LÝ THUYẾT MÔI TRƢỜNG ĐIỂN HÌNH CHO ĐỊNH XỨ ANDERSON…………………………………………………………….. 15 2.1. Sơ lƣợc về hàm Green ………………………………………… 15 2.1.1. Định nghĩa các hàm Green hai thời gian…………………… 15 2.1.2. Phƣơng trình chuyển động cho hàm Green hai thời gian……17 2.1.3. Một ví dụ về tính hàm Green…………………………….... 18 2.2. Lý thuyết môi trƣờng điển hình cho định xứ Anderson………… 20 2.2.1 Lý thuyết trƣờng trung bình động cho hệ đồng nhất ……….. 20 2.2.2 Lý thuyết môi trƣờng điển hình cho định xứ Anderson…….. 23 CHƢƠNG 3. GIẢN ĐỒ PHA ĐIỆN TỬ Ở FKM VỚI BẤT TRẬT TỰ TUÂN THEO PHÂN BỐ GAUSS……………………………………… 29 3.1.Mô hình và hình thức luận………………………………………. 29 3.2. Kết quả tính số và thảo luận…………………………………….. 35 KẾT LUẬN………………………………………………………………. 40 TÀI LIỆU THAM KHẢO……………………………………………….. 41
- 2 MỞ ĐẦU Tƣơng tác giữa các điện tử và bất trật tự đóng một vai trò quan trọng trong việc hình thành các tính chất của vật rắn. Mặc dù tính chất truyền dẫn của vật rắn có thể giải thích một cách cơ bản thông qua lý thuyết vùng năng lƣợng, nhƣng tƣơng tác của các điện tử là nguyên nhân hàng đầu gây nên trong một số hiện tƣợng vật lý thú vị nhƣ điện môi Mott, siêu dẫn, siêu chảy v.v. Mặt khác, bất trật tự luôn có mặt trong vật liệu thực tế nhƣ tạp chất và sai hỏng mạng đƣợc thừa nhận có vai trò quyết định cho một loạt tính chất khác của vật rắn nhƣ thủy tinh spin, hiệu ứng Hall lƣợng tử, hỗn loạn lƣợng tử v.v. Vì thế, để có thể mô tả và hiểu đƣợc các tính chất điện tử của vật liệu cần xem xét đồng thời hai hiệu ứng mất trật tự và tƣơng quan điện tử. Kết quả nghiên cứu mô hình liên kết chặt mất trật tự (sau này đƣợc gọi là mô hình Anderson) cho thấy bất trật tự đủ lớn sẽ cản trở sự khuyếch tán của hạt tải. Các quá trình tán xạ ngƣợc kết hợp làm cho các hạt tải bị định xứ. Đặc biệt, sự định xứ của các trạng thái tại mức Fermi gây ra chuyển pha kim loại – điện môi, gọi là chuyển pha Anderson. Mặt khác chuyển pha kim loại – điện môi gây ra bởi tƣơng quan điện tử gọi là chuyển pha Mott. Sự kết hợp giữa mô hình Anderson và mô hình Hubbard tạo nên mô hình Anderson – Hubbard (AHM), trong lúc đó sự kết hợp giữa mô hình Anderson và mô hình Falicov – Kimball gọi là mô hình Anderson – Falicov – Kimball (AFKM). Nhƣ vậy, so với mô hình Hubbard (mô hình Falicov – Kimball) thì AHM (AFKM) đƣợc bổ sung số hạng thứ ba mô tả thế bất trật tự i đƣợc phân bố một cách ngẫu nhiên trên các nút mạng theo hàm phân bố xác suất P i nào đó. Các hàm phân bố xác suất thƣờng đƣợc xét đến là phân bố đều, phân bố Gauss, phân bố Lorentz và phân bố nhị phân (binary distribusion). Đáng chú ý là việc tìm kiếm thông số trật tự để có thể phân biệt đƣợc trạng thái định xứ và trạng thái lan truyền trong chuyển pha Anderson là một thách thức trong nghiên cứu hệ điện tử bất trật tự. Dobrosavljevic và các cộng sự đã phát triển lý thuyết môi trƣờng điển hình (Typical Medium Theory: TMT) để nghiên cứu các hệ không trật tự, trong đó mật độ trạng thái điển hình (TDOS) đƣợc xấp xỉ bằng cách lấy trung bình nhân theo các cấu hình không trật tự, thay cho mật độ trạng thái lấy trung bình cộng [1]. Nhóm tác giả này chứng tỏ rằng TDOS triệt
- 3 tiêu một cách liên tục khi độ lớn của mất trật tự tiến đến giá trị tới hạn và nó có thể dùng làm thông số trật tự hiệu dụng trung bình cho chuyển pha Anderson. Giản đồ pha ( ) tại đối với mô hình AFKM lấp đầy một nửa thu đƣợc từ lý thuyết môi trƣờng điển hình TMT cho trƣờng hợp tuân theo phân bố đều trên đoạn bao gồm 3 pha: kim loại, điện môi Mott (có khe cấm) và điện môi Anderson (không có khe cấm) đã đƣợc công bố trong công trình của Byczuk [2]. Ở đề tài này chúng tôi sẽ nghiên cứu giản đồ pha ở mô hình AFKM lấp đầy một nửa khi bất trật tự tuân theo phân bố Gauss bằng lý thuyết TMT và so sánh với kết quả của Byczuk nhằm đánh giá ảnh hƣởng của các loại phân bố tạp lên giản đồ pha tìm đƣợc. Đề tài luận văn của tôi là: Giản đồ pha điện tử ở mô hình Falicov – Kimball với bất trật tự tuân theo phân bố Gauss Đề tài hƣớng tới những kết quả sau đây: 1) Tìm hiểu về chuyển pha kim loại – điện môi và định xứ Anderson, lý thuyết trƣờng trung bình động và lý thuyết môi trƣờng điển hình cho định xứ Anderson 2) Xây dựng giản đồ pha điện tử ở FKM với bất trật tự tuân theo phân bố Gauss và so sánh với giản đồ pha ở trƣờng hợp phân bố đều. Luận văn áp dụng lý thuyết môi trƣờng điển hình, trong đó kết hợp giữa DMFT và việc lấy trung bình nhân mật độ trạng thái định xứ. Để đơn giản hóa việc tính toán DMFT tuyến tính cũng đƣợc áp dụng ở đây. Nội dung luận văn có bố cục nhƣ sau Chƣơng 1: Chuyển pha kim loại – điện môi và định xứ Anderson Chƣơng 2: Lý thuyết môi trƣờng điển hình cho định xứ Anderson Chƣơng 3: Giản đồ pha điện tử ở FKM với bất trật tự tuân theo phân bố Gauss
- 4 CHƢƠNG 1: CHUYỂN PHA KIM LOẠI – ĐIỆN MÔI VÀ ĐỊNH XỨ ANDERSON Điện môi hoặc chất dẫn điện kém có khả năng cho ánh sáng đi qua do sự tồn tại của khe năng lƣợng, Eg . Bởi vì năng lƣợng của ánh sáng nhìn thấy 1.7 3.1 eV nhỏ hơn năng lƣợng của khe Eg 4 10 eV trong chất điện môi, hấp thụ photon không xảy ra và vật liệu cho ánh sáng truyền qua. Kim cƣơng, là chất cách điện tốt, trong suốt và có điện trở suất 1011 1018 m . Kim loại hoặc chất dẫn điện tốt hấp thụ một phần và phản xạ ánh sáng. Sự phản xạ và hấp thụ xảy ra do kim loại có vùng dẫn không bị lấp đầy. Bạc là một chất dẫn điện tốt có điện trở suất 108 m và hệ số phản xạ của nó là R 0.90 đối với ánh sáng nhìn thấy. Khi vật liệu trải qua chuyển pha kim loại – điện môi (MIT) điện trở suất của nó thay đổi một vài bậc về độ lớn. Ví dụ với V2O3 , giản đồ điện trở suất - áp suất đƣợc trình bày trong Hình 1.2a. Tại áp suất ngoài 20Kbar chuyển pha bậc nhất xảy ra, khi đó điện trở suất của V2O3 thay đổi 9 bậc. Khi chƣa xét đến bất trật tự, hai tham số điều khiển MIT là cƣờng độ tƣơng quan điện tử và độ lấp đầy dải điện tử. Cả hai tham số này đều đƣợc điều khiển thông qua điện trƣờng, từ trƣờng ngoài, áp suất và sự pha tạp hạt tải. Trong các vật liệu, nơi lý thuyết vùng năng lƣơng áp dụng tốt, điều khiển tính dẫn điện rất khó, chẳng hạn nhƣ đƣa hạt tải vào kim cƣơng. Ở một số vật liệu khác tƣơng quan điện tử đóng vai trò chủ đạo trong việc điều khiển MIT. Ví dụ V2O3.Trạng thái điện môi của nó đƣợc gọi là điện môi Mott. Sau đây là phần giới thiệu vắn tắt về bức tranh vùng năng lƣợng, bức tranh chuyển pha kim loại – điện môi Mott và định xứ Anderson. 1.1. BỨC TRANH VÙNG NĂNG LƢỢNG Xét một khí Fermi đƣợc đặt vào thế mạng tinh thể tuần hoàn. Nếu thế Hình.1.1. Bức tranh sơ đồ vùng năng lượng. EF là năng lượng Fermi, Eg là khe cấm, k là véc tơ mạng đảo. Nếu EF cắt với vùng năng lượng hệ là kim loại. Nếu EF cắt khe cấm thì hệ là điện môi [3].
- 5 mạng không đổi trong không gian và thời gian, các điện tử đƣợc phân bố đều trong không gian và tuân theo phân bố Fermi-Dirac trong không gian xung lƣợng. Khi thế mạng tinh thể tuần hoàn yếu đƣợc đƣa vào V(r) = V(r+R), trong đó R là véc tơ mạng, các điện tử với véc tơ sóng k nhất định bị phản xạ Bragg bởi các mặt mạng trong tinh thể, từ đó một khe năng lƣợng (khe cấm) Eg = 2|V| trong vùng lân cận năng lƣợng Fermi đƣợc hình thành, phân tách vùng điện tử thành vùng dƣới (vùng hóa tri) và vùng trên (vùng dẫn). Nếu trạng thái trống thấp nhất đƣợc tách ra khỏi trạng thái đầy cao nhất bởi khe năng lƣợng (khe cấm) thì hệ là điện môi. Trong trƣờng hợp này, điện trƣờng ngoài yếu không làm thay đổi sự phân bố điện tử và do đó không thể gây ra dòng điện. Khi số lƣợng điện tử trên mỗi ô cơ sở là chẵn (lẻ) vùng hóa trị luôn bị lấp đầy hoàn toàn (một phần). Nếu Eg 0 và mức Fermi cắt với một trong các vùng năng lƣợng thì hệ là kim loại. Khi mức Fermi nằm trong khe cấm hệ là điện môi và Eg càng lớn thì tính cách điện của vật liệu càng tốt. Lƣợc đồ cấu trúc vùng đơn giản đƣợc trình bày ở Hình1.2. Năng lƣợng điển hình của khe cấm khoảng vài eV và năng lƣợng nhiệt kBT 1/ 40 eV không đủ để tạo ra dòng điện tử. Sự chuyển pha kim loại – điện môi xảy ra nếu một vật liệu đƣợc pha tạp bởi các hạt tải điện hoặc nếu cấu trúc mạng đƣợc sắp xếp lại do một áp lực ngoài. Ở trạng thái điện môi, mức Fermi nằm trong khe cấm, sự pha tạp vừa đủ của các điện tử làm cho mức Fermi EF dịch chuyển lên trên vùng điện tử lấp đầy thấp nhất và hệ trở thành kim loại, hoặc ngƣợc lại. Sự tác động của áp lực ngoài làm thay đổi đáng kể thế mạng hiệu dụng và dẫn tới sự thay đổi độ rộng của khe cấm. Khi khe cấm nằm trong vùng lân cận mức Fermi bị triệt tiêu hoặc phát sinh, MIT xảy ra. Lý thuyết vùng năng lƣợng không tiên đoán đƣợc cách hành xử của các ôxit kim loại chuyển tiếp (V2O3, NiO, Fe3O4 …) và điện môi Mott. Một số ôxít kim loại chuyển tiếp là chất cách điện mặc dù chúng có số lẻ điện tử trên mỗi ô cơ sở. Điều này không phù hợp với lý thuyết vùng. Ví dụ các oxit Fe3O4 và Fe2O3 có cấu trúc mạng nhƣ nhau và có 5.5 và 5 điện tử tƣơng ứng trên mỗi ô cơ sở. Tuy thế chất đầu tiên dẫn điện tốt hơn 1011 lần so với chất thứ hai. Lý thuyết vùng không thể giải thích đƣợc pha điện môi khi vùng năng
- 6 lƣợng bị lấp đầy một phần, cũng nhƣ ở trƣờng hợp sự lấp đầy không nguyên. Một ví dụ khác là V2O3 lẽ ra phải là một kim loại trong giản đồ pha, trong khi nó lại thể hiện chế độ điện môi (xem Hình.2b) ở nhiệt độ thấp Hình.1.2: a) Điện trở suất như là hàm của áp suất ở V2O3 tại các độ pha tạp khác nhau .Sự thay đổi đột ngột của điện trở suất là hệ quả của chuyển pha kim loại – điện môi. b) Sơ đồ pha cho V2O3. Lý thuyết vùng dự đoán là pha kim loại trên cả sơ đồ pha, tuy nhiên số liệu thực nghiệm chứng minh sự tồn tại của pha điện môi tại nhiệt độ thấp [4] 1.2. BỨC TRANH CHUYỂN PHA KIM LOẠI – ĐIỆN MÔI MOTT Các chất điện môi hình thành do tƣơng quan điện tử đƣợc gọi là điện môi Mott. Xét một hệ điện tử đƣợc lấp đầy một nửa với các vùng năng lƣợng hẹp, đƣợc mô tả bởi Hamiltonian Hubbard sau đây: H tij f i† f j nˆi U nˆi nˆi ij , i i (1.2.1)
- 7 Trong đó, fi† , fi là toán tử sinh hủy điện tử tại nút i có spin ; tij là tham số nhảy nút của điện tử từ nút j sang nút i xét trong lân cận gần nhất và số hạng đầu của Hamiltonian mô tả động năng của hệ điện tử; là thế hóa học; U là tƣơng tác Coulomb địa phƣơng của hai điện tử trên cùng một nút trong mạng và số hạng sau của Hamiltonian mô tả thế năng của hệ; ni fi† fi là toán tử số hạt tại nút i. Mặc dù mô hình Hubbard rất đơn giản, nó cho phép mô tả pha điện môi Mott và chuyển pha MIT giữa pha điện môi Mott và pha kim loại. Thật vậy, hệ là kim loại hay điện môi phụ thuộc vào tỉ lệ giữa khe năng lƣợng và cƣờng độ của tƣơng quan điện tử - điện tử, 2t / U . Khi tƣơng quan điện tử - điện tử là không đáng kể , t / U 1 , điện tử nhảy giữa các nguyên tử và hệ là kim loại. Trong giới hạn nguyên tử, t / U 1 , tƣơng quan điện tử - điện tử chiếm ƣu thế, các điện tử đƣợc định xứ mạnh và hệ là điện môi. Hình.1.3. a) Sơ đồ chuyển pha Mott, trong đó khi tương quan điện tử giảm phân vùng Hubbard dưới (LHB) và phân vùng Hubbard phía trên (UHB) bắt đầu phủ nhau và hệ trở thành kim loại. b) Phổ phát xạ và các tính toán của lý thuyết trường trung bình động cho V2O3 . Đỉnh chuẩn hạt ( E EF 0 ) và LHB được nhìn thấy rõ ràng, tuy nhiên đỉnh chuẩn hạt rộng hơn nhiều so với dự đoán của mô phỏng theo lý thuyết trường trung bình động [5]. Đỉnh chuẩn hạt ( E EF 0 ) và LHB được nhìn thấy rõ ràng, tuy nhiên đỉnh chuẩn hạt rộng hơn nhiều so với dự đoán của mô phỏng theo lý thuyết trường trung bình động. Sơ đồ chuyển pha Mott đƣợc trình bày trong Hình 1.3.a. Chúng ta hãy xem xét một hệ lấp đầy một nửa và xen phủ nhỏ của các quỹ đạo nguyên tử, U . Năng lƣợng E0 N 1 E0 N cần để tăng tức là độ rộng vùng 2D
- 8 thêm một điện tử đƣợc cho bởi N L U D (N là số điện tử và L là số nút mạng), ở đây kích thích điện tích với năng lƣợng U đƣợc xem là linh động, sao cho chúng tạo thành một vùng rộng D nhƣ trong trƣờng hợp các điện tử không tƣơng tác. Vùng này gọi là phân vùng Hubbard trên, nói chung không phải là vùng đơn điện tử và nó mô tả phổ kích thích điện tích khi một điện tử đƣợc thêm vào trạng thái cơ bản. Năng lƣợng cần thiết để loại bỏ một điện tử là N L E0 N E0 N 1 2 D . Phổ tƣơng ứng tạo thành phân vùng Hubbard dƣới. Cả hai phân vùng đƣợc trình bày trong Hình.1.3a. Khi D U chúng ta chờ đợi rằng thế hóa học không liên tục và khe năng lƣợng N L U D 0 , hai phân vùng tách nhau, do đó hệ là điện môi. Nếu độ xen phủ nhau của các quỹ đạo nguyên tử tăng U D , hai phân vùng bắt đầu chạm nhau, chuyển pha kim loại – điện môi xảy ra. Khi U D các phân vùng phủ nhau, khe cấm biến mất và hệ là kim loại. Năng lƣợng khe cấm của chất điện môi vào cỡ eV, trong đó 1 eV ~ 104K, vƣợt quá thang năng lƣợng (nhiệt độ Neel) đƣợc dự đoán bởi Slater, Eg kBTN . Nếu lực đẩy trong chất điện môi là lớn so với động năng, độ ổn định của điện môi đƣợc đảm bảo. Mặc dù lý thuyết Mott-Hubbard đã mô tả tốt các trạng thái điện môi, nhƣng nó không mô tả đƣợc chính xác các trạng thái kim loại. Trong các kim loại tƣơng quan, đỉnh chuẩn hạt nằm tại mức Fermi, ngoài phân vùng Hubbard dƣới, đƣợc quan sát thấy trong các thí nghiệm phát quang. Ví dụ phổ của V2O3 đƣợc thể hiện trong Hình.1.3.b. Lƣu ý rằng các thí nghiệm phát quang chỉ phân giải các trạng thái bị chiếm đóng và do đó không thể phân giải phân vùng Hubbard trên. Ngoài ra, ở bức tranh MIT trên đây bất trật tự chƣa đƣợc đề cập đến. Phần tiếp theo sẽ giới thiệu chuyển pha kim loại – điện môi Anderson. 1.3. ĐỊNH XỨ ANDERSON Chuyển tiếp định xứ Anderson là chuyển pha kim loại – điện môi đƣợc gây ra bởi mất trật tự. Khi một điện tử lan truyền trong một thế tuần hoàn, sự giao thoa của các thành phần phản xạ và truyền qua của hàm sóng tạo ra các dải và khe cấm trong phổ năng lƣợng của điện tử. Với năng lƣợng xác đinh ở một dải, nếu
- 9 mật độ trạng thái khác không, hàm sóng điện tử tƣơng ứng trải rộng trên toàn bộ cấu trúc. Trong một tinh thể thực, sự tán xạ của hàm sóng điện tử với các tạp chất làm xuất hiện điện trở và độ dẫn điện hữu hạn. Theo vật lý cổ điển, điện tử lan truyền trong kim loại theo cơ chế khuếch tán và có thể mô tả nó nhƣ là sự dịch chuyển ngẫu nhiên: sau mỗi va chạm điện tử không còn ghi nhớ chuyển động trƣớc đó của nó, và do đó mật độ hạt n r , t tuân theo phƣơng trình n D 2 n, (1.3.1) t trong đó D là hệ số khuếch tán. Mật độ n r , t có thể đƣợc hiểu nhƣ mật độ hạt, nhƣng cũng có thể hiểu là xác suất tìm thấy một hạt ở tọa độ r tại thời điểm t. Nếu điện tử bắt đầu dịch chuyển từ một điểm xác định ở thời điểm ban đầu ( t 0 ), độ dịch chuyển bình phƣơng trung bình tại thời điểm t, khi thời gian đủ dài là r t 2Dt , t . 2 (1.3.2) Từ biểu thức (1.3.2), gọi l là quãng đƣờng tự do trung bình và là thời gian giữa hai lần va chạm liên tiếp, ta có thể viết đƣợc hằng số khuếch tán nhƣ sau l 2 vF l k l D F , (1.3.3) 2 2 2m kF trong đó vF là tốc độ của điện tử ở bề mặt Fermi, m là khối lƣợng của m nó, kF là véc tơ sóng Fermi. Khi vật dẫn đƣợc đặt trong một điện trƣờng E, điện tử nhận xung lƣợng từ trƣờng ngoài, và nó có tốc độ cuốn: theo mô tả cổ điển, hạt đƣợc giả định có xung lƣợng hoàn toàn xác định trên quãng đƣờng tự do trung bình l và xung lƣợng của nó giảm xuống sau mỗi lần tán xạ với tạp chất. Ở trạng thái cân bằng, tốc độ mà điện tử đƣợc gia tốc nhờ trƣờng ngoài bằng tốc độ mà nó bị tán xạ do tạp chất . Lƣu ý rằng chỉ có các điện tử ở gần với mức Fermi EF
- 10 mới tham gia vào quá trình dẫn điện và biểu thức của độ dẫn điện là ne2 / m , với mật độ điện tử linh động n liên hệ với mật độ trạng thái tại mức Fermi đƣợc tính theo công thức: EF n / EF 2n / mvF2 . Kết hợp 2 công thức này với công thức của hằng số khuếch tán và thời gian phục hồi ở (1.1.3), chúng ta thu đƣợc liên hệ giữa độ dẫn điện với hằng số khuếch tán nhƣ sau: e 2 D EF , (1.3.4) trong đó e là điện tích của điện tử. Theo bức tranh này, khi mất trật tự của hệ tăng, tức là nồng độ tạp chất tăng, quãng đƣờng tự do trung bình của điện tử giảm, dẫn tới D giảm và độ dẫn điện giảm. Với mất trật tự mạnh, tuy nhiên chúng ta vẫn chờ đợi một độ dẫn điện hữu hạn. Tuy nhiên, trong báo cáo hội thảo năm 1958, Anderson cho rằng, khi mất trật tự vƣợt qua một giá trị tới hạn, thì biểu thức (1.3.4) không còn đúng nữa, điện tử bị bẫy và sự chuyển động khuếch tán của nó bị dừng hoàn toàn [6]. Ý tƣởng này ban đầu đƣợc đƣa ra để giải thích một số kết quả thực nghiệm của nhóm của Feher, theo đó thời gian phục hồi của các spin điện tử trong chất bán dẫn pha tạp dài một cách bất thƣờng. Đặc biệt, Anderson đƣa ra giả thuyết rằng, khi quãng đƣờng tự do trung bình của điện tử nhỏ hơn chiều dài bƣớc sóng Fermi F 2 / kF , thay vì cho rằng các điện tử nhƣ là các sóng lan truyền với thời gian sống ngắn, chúng có thể đƣợc xem nhƣ các sóng bị giam cầm trong không gian với thời gian sống dài. Hàm sóng r của điện tử đƣợc định xứ theo hàm mũ xung quanh một tâm r0 , trên một khoảng cách , đƣợc gọi là độ dài định xứ, và chúng ta có r r0 r 2 A exp . (1.3.5) Để giải thích hiện tƣợng định xứ xuất hiện nhƣ thế nào, Anderson đã sử dụng mô hình liên kết chặt trong một mạng tinh thể mất trật tự, mô hình này đã trở thành mô hình mẫu trong nghiên cứu hiện tƣợng định xứ. Trong mô hình Anderson, điện tử chịu ảnh hƣởng của một thế ngẫu nhiên i tại mỗi nút i của mạng tinh thế, và nó có thể nhảy qua các nút lân cận nhờ số hạng nhảy
- 11 nút t. Sự tƣơng tác giữa điện tử với điện tử đƣợc bỏ qua. Hamiltonian của mô hình này có dạng [6] H i c i c i t c i c j h.c., † † i ij (1.3.6) trong đó tham số ngẫu nhiên i đƣợc phân bố độc lập và đồng nhất, chẳng hạn với dạng phân bố hộp (đều) sau đây: 1 W W W, i , 2 2 p i . (1.3.7) 0 , W W i , 2 2 Nếu W = 0 hàm riêng của mô hình là các trạng thái Bloch, còn trong trƣờng hợp ngƣợc lại, nếu t 0 Hamiltonian là chéo và mỗi trạng thái riêng đều định xứ hoàn toàn trên mỗi nút của mạng tinh thể. Điều gì xảy ra giữa hai Hình 1.4. Các hàm sóng định xứ ở vật liệu bất trật tự 2 chiều [7] trƣờng hợp giới hạn này căn cứ vào tỉ số W / t : nếu nó lớn, có rất ít khả năng để điện tử tìm thấy một mức năng lƣợng sát nhau và không quá xa nhau trong không gian, và nhƣ thế sự chồng chập của hàm sóng ở các nút tƣơng ứng là
- 12 không đáng kể. Để hiểu rõ hơn điều này chúng ta xét một Hamiltonian gồm 2 nút mạng, với số hạng chéo 1 , 2 và số hạng nhảy nút t. Dễ dàng thực hiện việc chéo hóa nó. Rõ ràng trong trƣờng hợp này độ lệch của các trạng thái riêng với các véc tơ trên nút ban đầu t chịu sự chi phối của t tỉ số và sự chênh lệch giữa các giá trị năng lƣợng riêng E1 và E2 đƣợc 1 2 cho bởi 1 2 t 2 . Bởi vậy, nếu 1 2 t , hàm riêng gần đúng bằng các 2 hàm sóng trên nút ban đầu, trong khi nếu 1 2 t chúng ta thu đƣợc hai trạng thái riêng trong đó xác xuất đƣợc chia sẻ giữa các nút (cộng hƣởng). Trong mô hình Anderson chúng ta có thể tƣởng tƣợng rằng, nếu mất trật tự mạnh W t sẽ có một vài cộng hƣởng cô lập và các hàm sóng gần đúng bằng các véc tơ sóng trên nút. Trong trƣờng hợp này điện tử bị bẫy xung quanh một tâm và hàm sóng của nó đƣợc cho bởi hàm bao. Ngƣợc lại khi số hạng nhảy nút đủ mạnh so với mất trật tự, chúng ta sẽ có nhiều cộng hƣởng phủ nhau và hệ sẽ có thuộc tính kim loại. Các trạng thái riêng định xứ đƣợc chờ đợi xuất hiện trong đuôi phổ năng lƣợng. Lý do trực quan đầu tiên là những trạng thái này có nguồn gốc từ năng lƣợng ngẫu nhiên lớn, và do đó, có thể trông đợi chúng bị ảnh hƣởng bởi mất trật tự nhiều hơn các trạng thái tại tâm phổ. Lý do thứ hai đƣợc đề xuất bởi Lifshitz: nhƣ đã đề cập ở trên, sự khuếch tán có thể xảy ra nếu bƣớc sóng Fermi F của điện tử nhỏ hơn rất nhiều quãng đƣờng tự do trung bình. Do đó, một tiêu chuẩn trực quan cho xuất hiện định xứ là điều kiện F l. (1.3.8)
- 13 Vì các trạng thái thuộc đuôi phổ có chiều dài bƣớc sóng lớn hơn so với các trạng thái ở trung tâm, chúng ta kì vọng sự định xứ xảy ra đầu tiên ở đuôi phổ. Đối với mỗi giá trị mất trật tự W có một năng lƣợng giới hạn Ec, đƣợc gọi là biên độ linh động (mobility edge), chia tách các trạng thái định xứ với các trạng thái phi định xứ. Trong trƣờng hợp của mô hình Anderson, chúng đƣợc Trạng thái định xứ Trạng thái định xứ Trạng thái lan truyền Hình.1.5. Các trạng thái định xứ xuất hiện đầu tiên ở đuôi vùng, như chờ đợi trực quan. Với một giá trị ấn định của bất trật tự W < Wc, bằng cách thay đổi mức Fermi so với đuôi vùng, chuyển pha kim loại – điện môi có thể xảy ra trong hệ. biểu diễn định tính trong Hình.1.5. Mật độ trạng thái đối xứng và hai E biên độ linh động Ec1 và Ec2 tách biệt, với mỗi giá trị của W các trạng thái định xứ nằm từ phần đuôi vùng đến các trạng thái lan truyền ở phần tâm vùng. Bằng cách thay đổi mức Fermi EF so với biên độ linh động có thể thu đƣợc quá trình chuyển pha kim loại – điện môi tại nhiệt độ bằng không (T = 0K). Đặc biệt, nếu EF > Ec1 hệ vận hành nhƣ kim loại, trong trƣờng hợp ngƣợc lại thì nhƣ một chất điện môi. Tồn tại một giá trị tới hạn Wc của bất trật tự để Ec1 = Ec2 , và tất cả các trạng thái trong phổ đƣợc định xứ nhƣ đƣợc chỉ ra ở Hình 1.6.
- 14 Điện môi Anderson Kim loại Khe Khe E Hình 1.6. Giản đồ pha định tính của mô hình Anderson trên mặt phẳng W-E. Với mỗi giá trị của bất trật tự W, có 2 biên vùng đối xứng và khi bất trật tự tăng quá giá trị tới hạn Wc thì toàn bộ phổ đều bị định xứ. Các đường đứt nét chỉ các biên vùng mà phía ngoài nó mật độ trạng thái bằng không [7]. Trực giác của Anderson và khám phá cơ chế của định xứ Anderson thể hiện sự phá vỡ bức tranh khuếch tán thông thƣờng: chất điện môi của Anderson không liên quan đến việc lấp đầy các dải mà liên quan đến sự hình thành các bẫy điện tử trong mạng do có bất trật tự [7].
- 15 CHƢƠNG 2. LÝ THUYẾT MÔI TRƢỜNG ĐIỂN HÌNH CHO ĐỊNH XỨ ANDERSON 2.1. SƠ LƢỢC VỀ HÀM GREEN Vào những năm 1950 - 1960 các hàm Green lƣợng tử đƣợc Feynman và Schwinger đề xuất nhƣ là các hàm truyền trong lý thuyết trƣờng lƣợng tử. Ngay sau đó chúng đƣợc mở rộng cho vật lí thống kê và hệ nhiều hạt. Hàm Green vật lý có thể là hàm Green một hạt hay hàm Green nhiều hạt. Khi hàm Green đƣợc xác định thì các tính chất vật lý của hệ tƣơng ứng cũng đƣợc xác định theo. Trong phần này sẽ đƣa ra các định nghĩa về hàm Green trong vật lý lƣợng tử đƣợc Zubarev đƣa ra vào năm 1960 để giải gần đúng các bài toán trong hệ tƣơng quan mạnh. 2.1.1 Định nghĩa các hàm Green hai thời gian. Hàm Green trễ Gr. r G r t , t ' i t t ' At , B t ' A t B t . (2.1.1) Hàm Green sớm Ga. a G a t , t ' i t ' t At , B t ' A t B t . (2.1.2) Hàm Green nhân Gc Gc t , t ' i A t , B t ' G† (t, t'). (2.1.3) Trong các công thức trên: Toán tử sắp xếp thứ tự thời gian từ lớn đến nhỏ: A t , B t ' t t ' A t B t ' t ' t B t ' A t . Hàm Heaviside (hàm bƣớc) .
- 16 Ở đây ... là kí hiệu lấy trung bình thống kế của hệ, tức là X 1 Z Tr e H X , với H là Hamiltonian của hệ, 1 T là nhiệt độ nghịch đảo và Z Tr e là hàm phân hoạch của hệ. H A t và B t ' là toán tử phụ thuộc thời gian trong biểu diễn Heisenberg và tiến hóa theo quy luật A t eiHt AeiHt ; B t ' eiHt BeiHt Tùy theo các hạt là Fermion ( 1 ) hoặc boson ( 1) mà A, B AB BA là giao hoán tử hay phản giao hoán tử. Từ định nghĩa ta có: Khi t < t’ thì t t ' 0 , tức là G r t , t ' 0 . Khi t > t’ thì t ' t 0 , tức là G a t , t ' 0. Xét hàm Green đối với hệ cân bằng ( tức là Hamiltonian không phụ thuộc vào thời gian) thì hàm Green hai thời gian chỉ phụ thuộc vào hiệu số giữa hai thời gian G t , t G t t . Chứng minh: xét hàm Green trễ: G r t , t i t t A t , B t (2.1.4) i t t A t B t B t A t . Mặt khác ta có: A t B t 1 Tr e H A t B t 1 Tr e H eiHt Ae iHt eiHt Be iHt (2.1.5) 1 Tr e H e Ae B . iH t t iH t t Nhƣ vậy hàm Green trễ (2.1.4) chỉ phụ thuộc vào hiệu t t . Vì vậy ta có thể sử dụng phép biến đổi Fourier thuận nghịch
- 17 d i t t G t t 2 G e . (2.1.6) G dtG t e it . (2.1.7) 2.1.2. Phƣơng trình chuyển động cho hàm Green hai thời gian. Phƣơng trình chuyển động cho hàm Green hai thời gian có thể nhận đƣợc bằng cách lấy đạo hàm theo thời gian cho hàm Green. Xét phƣơng trình chuyển động cho hàm Green trễ: G r t t t t A t i A t , B t i t t ' i , B t t t t G r t t A t , B t ' i t t A, H t , B t i t t (2.1.8) t G r t t i t t A t , B t ' A, H t B t . t Với hàm Green sớm ta cũng thu đƣợc kết quả tƣơng tự. Vậy phƣơng trình chuyển động cho hảm Green hai thời gian có dạng: G t t i t t A t , B t ' A, H t B t . t (2.1.9) Lấy ảnh Fourier cho phƣơng trình (2.1.9) ta thu đƣợc AB A, B A, H B . (2.1.10) Phƣơng trình (2.1.10) đƣợc gọi là phƣơng trình chuyển động cho hàm Green viết dƣới dạng tần số.
- 18 2.1.3. Một ví dụ về tính hàm Green. Bài toán: Tính hàm Green của hệ điện tử trong mô hình Hubbard ở các trƣờng hợp riêng U = 0 và t = 0 Hamiltonian Hubbard trong tập thống kê lớn 1 H H 0 H1 tij ij ci† c j U ni ni . 2 i (2.1.11) ij Với ni ci† ci là toán tử số hạt; tij là thông số nhảy nút của điện tử từ nút j sang nút i; U là tƣơng tác Coulomb địa phƣơng của hai điện tử trên nút i. Ta có : ck ' , H tij ij ck ' , ci† c j 1 U ck ' , ni ni ij 2 i tij ij c j ki ' U ci ci† ci ki ' ci† ci ci ki ' 1 (2.1.12) ij 2 i tkj kj c j ' Unk ' ck ' . j Ta có phƣơng trình chuyển động cho hàm Green của hệ : Gij ij Gij tim Gmj U ci† c i ci c †j , (2.1.13) m ilm,j ci† c l cm c†j . (2.1.14) Phƣơng trình (2.1.13) trở thành: ( )Gij ij tim Gmj U iii , j . (2.1.15) m Xét giới hạn U = 0 . Phƣơng trình (2.1.15) với lƣu ý tim t với lân cận gần nhất ta đƣợc: ( )Gij ij t Gmj . (2.1.16) m Chuyển sang biểu diễn Fourier theo tọa độ:
- 19 Gij 1 N k ik R R e i j Gk k , 1 ik R R ij e i j . (2.1.17) N k Gmj m 1 N k ik R R ik e i j Gk k , Từ (2.1.16) và (2.1.17) suy ra: Gk k , 1 , k (2.1.18) với k t eik . Đây là hàm Green của điện tử linh động khi bỏ qua tƣơng tác. Hệ luôn là kim loại. Xét giới hạn t 0 . Ta tính: iii,j ci† c i ci c†j . Với U iii, j ij n tim iim, j imi , j iim, j . Ta sử dụng gần đúng nguyên tử: tij 0 khi i j và đặt tii k ta thu đƣợc: n iii , j ij . (2.1.19) k U Từ (2.1.15) và (2.1.19) ta thu đƣợc kết quả: 1 n n Gij . (2.1.20) k k U Đây là hàm Green của điện tử không linh động (không có nhảy nút). Điện tử bị định xứ và hệ là điện môi [8].
- 20 2.2. LÝ THUYẾT MÔI TRƢỜNG ĐIỂN HÌNH CHO ĐỊNH XỨ ANDERSON 2.2.1. Lý thuyết trƣờng trung bình động cho hệ đồng nhất Trong lý thuyết trƣờng trung bình động, bản chất vật lý của bài toán hệ nhiều hạt đƣợc quy về bài toán ở các mô hình đơn tạp đƣợc liên kết tự hợp với một môi trƣờng hiệu dụng. Để lấy ví dụ, ta xét mô hình Hubbard có Hamiltonian đƣợc cho ở công thức (1.2.1) ở Chƣơng 1. Hình 2.1: Hình minh họa cho hệ có sự tương tác giữa các nút Giả sử có một hệ thỏa mãn tính bất biến tịnh tiến nhƣ trong Hình 2.1. Xét một nút bất kì trong hệ, nếu số nút lân cận tiến tới vô cùng, theo định lý giới hạn trung tâm những thăng giáng trong không gian là nhỏ và có thể bỏ qua. Điều này có nghĩa là ảnh hƣởng từ các nút khác có thể đƣợc thay thế bằng một môi trƣờng hiệu dụng, tức là tất cả các bậc tự do trên các nút khác sẽ đƣợc tích hợp nhƣ là một bể ngoài đối với nút đã cho, đƣợc thể hiện ở Hình 2.2 . Do đó động lực học tại nút đã cho ấy (tạp) có thể đƣợc coi là sự tƣơng tác (sự lai hóa) của nút này với bể. Hơn thế nữa, bể này tự nó không tƣơng tác. Bể Hình 2.2: Hình minh họa của phương pháp hốc
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận văn Thạc sĩ Vật lý: Cường độ chuyển dời và mật độ mức của hạt nhân 52V
41 p | 256 | 32
-
Luận văn Thạc sĩ Vật lý: Kiểm tra và giải đoán khuyết tật một số vật liệu kim loại trong sản phẩm công nghiệp bằng phương pháp chụp ảnh phóng xạ tia X
68 p | 140 | 22
-
Luận văn thạc sĩ Vật lý: Theo dõi quá trình tautome dạng imino-amino của cytosine bằng xung laser siêu ngắn
113 p | 123 | 16
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu chế tạo và khảo sát tính chất vật liệu quang xúc tác TiO2/MoS2/Au ứng dụng trong phản ứng tách nước
67 p | 56 | 12
-
Luận văn Thạc sĩ Vật lý lý thuyết và vật lý toán: Nghiên cứu một số đặc điểm điện trường mây dông
58 p | 17 | 9
-
Luận văn Thạc sĩ Vật lý chất rắn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu nano W03 và W03 - Au cho ứng dụng quang xúc tác vùng ánh sáng nhìn thấy
72 p | 16 | 9
-
Luận văn Thạc sĩ Vật lý: Khảo sát một số đặc trực vật lý của lò phản ứng hạt nhân thử nghiệm kỹ thuật làm mát bằng khí nhiệt độ cao (HTTR) sử dụng chương trình tính toán Monte Carlo Serpent 2
89 p | 19 | 9
-
Luận văn Thạc sĩ Vật lý lý thuyết và vật lý toán: Lạm phát bất đẳng hướng dưới điều kiện constant-roll cho mô hình Dirac-Born-Infeld
88 p | 15 | 8
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu phân hủy chất Rhodamine B sử dụng kỹ thuật plasma jet
45 p | 42 | 8
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu và phát triển bộ dao động laser băng hẹp, điều chỉnh bước sóng bằng cách tử
58 p | 35 | 8
-
Luận văn Thạc sĩ Vật lý lý thuyết và vật lý toán: Nghiên cứu nghiệm lạm phát vũ trụ trong mô hình k-Gauss-Bonnet
106 p | 19 | 8
-
Luận văn Thạc sĩ Vật lý: Cấu trúc tinh thể và cấu trúc từ của vật liệu Mn3O4 pha tạp các kim loại chuyển tiếp: Nghiên cứu sử dụng phương pháp nhiễu xạ nơtron
70 p | 17 | 7
-
Luận văn Thạc sĩ Vật lý: Tìm vị trí góc bát phân của góc trộn lepton θ_23 với thí nghiệm Hyper-Kamiokande và ảnh hưởng của nó đến phép đo vi phạm đối xứng CP
106 p | 34 | 7
-
Luận văn Thạc sĩ Vật lý: Thiết kế chế tạo ma trận thấu kính biên dạng tự do nhằm tăng hiệu suất trong chiếu sáng cây trồng
78 p | 38 | 7
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu điều khiển đặc tính hấp thụ sóng điện từ của vật liệu biến hóa (Metamaterials)
74 p | 36 | 7
-
Luận văn Thạc sĩ Vật lý chất rắn: Nghiên cứu chế tạo và đánh giá khả năng chống oxy hóa của hệ nano Taxifolin
72 p | 11 | 6
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu hiện tượng chuyển pha Nematic trong tinh thể lỏng
51 p | 13 | 6
-
Luận văn Thạc sĩ Vật lý: Nghiên cứu các tính chất phi cổ điển của trạng thái thêm hai và bớt một photon lên hai mode kết hợp
90 p | 19 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn