Nghiên cứu kết hợp thuật toán MCC và K-means trong phân loại đám mây điểm LiDAR
lượt xem 3
download
Bài viết tập trung vào nghiên cứu cách kết hợp thuật toán MCC và K-means nhằm tối ưu hơn trong bài toán phân loại đám mây điểm LiDAR để từ đó có thể sử dụng điểm sau phân loại vào bài toán khảo sát bề mặt của khu vực đo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Nghiên cứu kết hợp thuật toán MCC và K-means trong phân loại đám mây điểm LiDAR
- Kỷ yếu Hội nghị KHCN Quốc gia lần thứ XI về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR); Hà Nội, ngày 09-10/8/2018 DOI: 10.15625/vap.2018.00050 NGHIÊN CỨU KẾT HỢP THUẬT TOÁN MCC VÀ K-MEANS TRONG PHÂN LOẠI ĐÁM MÂY ĐIỂM LIDAR Nguyễn Thị Hữu Phương1, Đặng Văn Đức2, Nguyễn Trường Xuân1, Trần Mạnh Trường2 1 Khoa Công nghệ thông tin, Trường Đại học Mỏ - Địa chất 2 Viện Công nghệ thông tin, Viện Hàn lâm Khoa học và Công nghệ Việt Nam nguyenphuong85.nb@gmail.com, dvduc@ioit.ac.vn, nguyentruongxuan@humg.edu.vn, tmtruong@ioit.ac.vn TÓM TẮT: Năm 2007, nhóm tác giả Jeffrey S.Evans và Andrew T.Hudak đã đề xuất thuật toán MCC (Multiscale Curvature Classification) để phân loại tự động đám mây điểm thành hai lớp mặt đất và không mặt đất. Trong quá trình phân loại, nhóm tác giả chỉ ghi nhận những điểm thuộc lớp mặt đất để tiến hành tạo DEM cho khu vực khảo sát, nhóm điểm không mặt đất bị loại bỏ, trong khi đây là nhóm điểm có chứa nhiều thông tin có ích về bề mặt không gian của khu vực khảo sát. Với mong muốn có thể thu thập và ghi nhận những thông tin có ích trong nhóm điểm trên, bài báo tập trung vào nghiên cứu cách kết hợp thuật toán MCC và K-means nhằm tối ưu hơn trong bài toán phân loại đám mây điểm LiDAR để từ đó có thể sử dụng điểm sau phân loại vào bài toán khảo sát bề mặt của khu vực đo. Từ khóa: MCC, K-Means, LiDAR, đám mây điểm. ĐẶT VẤN ĐỀ Công nghệ LiDAR là một công nghệ tiên tiến hàng đầu trong hệ thống các công nghệ thu thập dữ liệu không gian trên thế giới. Với khả năng trực tiếp thu nhận đám mây điểm 3D với hộ chính xác cao, LiDAR được áp dụng rộng rãi trong việc thành lập mô hình số độ cao (Digital Elevation Model - DEM) của bề mặt địa hình, dựa vào đó có thể theo dõi được dòng chảy của nước hay giám sát di chuyển khối, thành lập bản đồ và viễn thám. Công nghệ LiDAR là sự phát triển và ứng dụng các thiết bị laser, định vị vệ tinh và đo quán tính để thu thập dữ liệu địa lý trên bề mặt trái đất. So sánh với các phương pháp thu nhận và xử lý trắc địa ảnh truyền thống, xử lý dữ liệu LiDAR dễ dàng hơn, thành lập chính xác mô hình DEM. Hơn thế nữa, xung laser có thể xuyên qua các địa hình, địa vật như lá, mặt đất dưới tán cây. LiDAR là kỹ thuật viễn thám quang học chủ động, thu nhận thông tin về đối tượng bằng cách truyền chùm tia laser đến đối tượng cần khảo theo các tuyến khảo sát cụ thể. Sự phản xạ của chùm tia laser từ đối tượng được phát hiện và phân tích bởi bộ thu nhận trong bộ cảm biến LiDAR. Những bộ thu nhận này sẽ ghi lại chính xác thời gian từ khi xung laser được phát ra đến khi trở về để tính khoảng cách giữa cảm biến và mục tiêu. Kết hợp với thông tin về vị trí từ thiết bị GPS, những phép đo khoảng cách này sẽ được chuyển thành các phép đo ba chiều thực tế của mục tiêu phản xạ trong không gian đối tượng (ESRI, 2018). Công nghệ LiDAR có thể tạo ra được đám mây điểm lớn chứa nhiều thông tin có giá trị về khu vực đo vẽ, khảo sát. Đám mây điểm là tập hợp các điểm đại diện cho hình dạng và đặc trưng 3D. Mỗi điểm có bộ toạ độ (X, Y, Z) và trong một số trường hợp có các đặc trưng bổ sung thêm. Đám mây điểm có nguồn gốc từ dữ liệu thô được quét từ các đối tượng vật lý trên bề mặt Trái đất như toà nhà, cây cối, nhà máy, đường dây điện, …. Một đám mây điểm thường rất lớn từ hàng chục nghìn đến hàng chục triệu điểm. Do đó, để có thể sử dụng đám mây điểm vào các mục đích như thành lập DEM/DTM phải tiến hành phân loại đám mây điểm thành các lớp chuyên biệt như lớp mặt đất, không mặt đất, lớp nhà cao tầng, …. (Knowlegde Center, 2015) Với bài toán phân phân loại đám mây điểm LiDAR, đã có nhiều nhà khoa học trên thế giới nghiên cứu và đã có những thành công nhất định. Như trong nghiên cứu của nhóm tác giả (Borja Rodriguez - Cuenca, nnk, 2015) đã sử dụng thuật toán phát hiện điểm để phát hiện và phân loại các đối tượng đô thị và cây cối từ dữ liệu 3D MLS (Mobile Laser Scanning) và TLS. Phương pháp bao gồm cả việc phân đoạn tự động để loại bỏ đi những phần không liên quan đến quá trình phân đoạn dọc đối tượng. Những đối tượng này được phân đoạn bằng thuật toán RX và sau đó được phân cụm để chia lớp đối tượng thành các lớp như cây cối, hồ nhân tạo,…. Hay trong nghiên cứu (A.Brzank, C.Heipke, 2005), đã đưa ra phương pháp mới để phân loại dữ liệu LiDAR thành các điểm mặt nước và mặt đất. Những điểm đo sẽ được phân loại theo đường quét và trong nghiên cứu này các tác giả cũng áp dụng logic mờ trong việc xác định những giá trị thành viên cho mỗi điểm thuộc về lớp mặt nước. Sau đó, phép phân loại sẽ phát hiện và làm chính xác bằng cách so sánh độ cao khác nhau giữa những điểm gần mặt nước và không phải mặt nước. Trong khi đó, các nghiên cứu (Suresh K. Lodha và nnk., 2003), (Yu chuan chang và nnk., 2008, (Zhuqiang Li và nnk., 2016) cũng đã đưa ra những phương pháp và thuật toán để phân loại đám mây điểm LiDAR nhằm trích xuất ra thông tin phục vụ cho quá trình nghiên cứu. Năm 2007, hai tác giả J. Evans và T. Hudak đã đề xuất thuật toán phân loại đám mây điểm LiDAR dựa trên miền cong đa tỉ lệ MCC (Multiscale Curvature Classification), sau phân loại đám mây điểm sẽ được phân thành hai lớp điểm mặt đất (ground) và không mặt đất (non-ground). Nhóm tác giả sử dụng nhóm điểm mặt đất để thành lập DEM của khu vực khảo sát, trong khi đó, nhóm điểm không mặt đất bị loại bỏ, nhưng đây lại là nhóm điểm chứa nhiều thông tin có ích về khu vực khảo sát. Với mong muốn thu nhận và phân loại nhóm điểm không mặt đất bị loại bỏ trong thuật toán MCC, nhóm tác giả đã áp dụng thuật toán K-means cho nhóm điểm này. Thuật toán K-means là thuật toán phân
- 380 NGHIÊN CỨU KẾT HỢP THUẬT TOÁN MCC VÀ K-MEANS TRONG PHÂN LOẠI ĐÁM MÂY ĐIỂM LIDAR cụm phổ biến, trong nghiên cứu của (Kun Zhang và nnk., 2015) nhóm tác đã sử dụng tham số mật độ của đám mây điểm như là điều kiện để lựa chọn số lượng cụm để tiến hành phân loại và là điều kiện để hội tụ. Hay trong nghiên cứu của (C. Torresan và nnk., 2016) phương pháp được các tác giả sử dụng để có thể phân loại rừng là thuật toán phân cụm K-means và thuật toán phân loại theo thứ bậc kết hợp với phương pháp máy học. Để đánh giá được độ chính xác của phương pháp các tác giả đã sử dụng cây phân loại, tuy nhiên kết quả phân loại có sai số tương đối lớn 45.9% với dữ liệu được chọn, còn đối với rừng tỉ lệ lỗi là 33.3%. II. NGHIÊN CỨU KẾT HỢP THUẬT TOÁN MCC VÀ K-MEANS TRONG PHÂN LOẠI ĐÁM MÂY ĐIỂM LIDAR 2.1. Thuật toán MCC Thuật toán MCC là thuật toán được sử dụng để phân loại đám mây điểm LiDAR 3D được phát triển bởi Moscow Forestry Sciences Laboratory, sử dụng chủ yếu để phân loại các tia phản xạ LiDAR trong môi trường rừng. Thuật toán này được sử dụng để phân loại các điểm thành hai lớp là mặt đất và không mặt đất (Jeffrey S.Evans, Andrew T.Hudak, 2007). MCC là thuật toán phân loại tín hiệu phản xạ LiDAR vượt quá ngưỡng độ cong của bề mặt, cách tiếp cận đa tỉ lệ sẽ xác định độ lệch của các điểm cần phân loại với bề mặt trung bình và loại bỏ dần những điểm này ra khỏi nhóm mặt đất. Thuật toán sẽ tính toán bề mặt trung bình từ những điểm mặt đất đặc trưng bằng phép lặp TPS (Thin Plate Spline), sau đó sẽ hiệu chỉnh nó thông qua một lõi lọc (Jeffrey S. Evans, Andrew T. Hudak, 2007). Thuật toán MCC có hai tham số là s (scale - biểu thị cho tỉ lệ) và t là ngưỡng độ cong (curvature threshold), trong đó tham số tỉ lệ là hàm của tỉ lệ các đối tượng trên mặt đất và khoảng lấy mẫu (khoảng cách sau) của dữ liệu LiDAR (Jeffrey S. Evans, Andrew T. Hudak, 2007). Triển khai thuật toán MCC các tác giả định nghĩa một vevtor Z(s) chứa giá trị tọa độ của tất cả các điểm LiDAR. Vector này sẽ được sử dụng trong phép lặp bề mặt raster sử dụng phép lặp TPS với độ phân giải theo tỉ lệ . Một lõi lọc có kích thước 3x3 duyệt qua tất cả các phép lọc để tìm một vector mới x(s). Miền tỉ lệ l là mô hình lặp được thiết lập với tham số của mô hình chạy đến khi hội tụ. và t sẽ được định nghĩa bởi người dùng (Jeffrey S. Evans, Andrew T. Hudak, 2007). Dung sai độ cong t sẽ được thêm vào x(s) và các điểm sẽ được phân lớp vào lớp không mặt đất bằng việc sử dụng điều kiện “If Z(s) > c then phân lớp không mặt đất”. Trong đó c là độ cong của miền tỉ lệ l (Jeffrey S. Evans, Andrew T. Hudak, 2007). Thuật toán MCC được mô tả như sau (Jeffrey S. Evans, Andrew T. Hudak, 2007): 1) Một bề mặt phẳng được lặp bằng cách sử dụng Z(s) và TPS. Hai tham số của mô hình cho miền tỉ lệ l được áp dụng là tham số tỉ lệ và ngưỡng độ cong t (khởi tạo và t do người dùng định nghĩa) 2) Một lõi lọc 3x3 sẽ duyệt qua toàn bộ bề mặt, một vector mới x(s) được định nghĩa có độ trùng khớp với Z(s) 3) Độ cong trong miền tỉ lệ l sẽ được tình theo công thức: c = x(s) + t; với x(s) là vector độ cao trung bình trùng khớp với Z(s) trong miền tỉ lệ l và t là tham số ngưỡng độ cong trong miền tỉ lệ l 4) Điểm LiDAR sẽ được phân lớp vào lớp không mặt đất và bị loại bỏ nếu: If Z(s) > c then phân lớp không mặt đất. Với c là độ cong trong miền tỉ lệ l 5) Ngưỡng hội tụ j sẽ được đánh giá, sau đó mô hình lặp lại hoặc sẽ bắt đầu với một miền tỉ lệ mới Hình 1. Mô tả thuật toán phân loại đám mây điểm LiDAR với MCC
- Nguyễn Thị Hữu Phương, Đặng Văn Đức, Nguyễn Trường Xuân, Trần Mạnh Trường 381 2.2. Áp dụng K-means trong phân loại nhóm điểm không mặt đất với thuật toán MCC K-means là thuật toán phân cụm dành cho dữ liệu nhiều chiều, là thuật toán dễ hiểu, dễ triển khai tuy nhiên điểm yếu của thuật toán là chỉ làm việc được với một giới hạn số lượng dữ liệu. Với dữ liệu đám mây điểm, thuật toán K-means hoạt động với 3 chiều dữ liệu X, Y, Z trong tính toán trắc địa. Khoảng cách Euclide sẽ được sử dụng để tính toán khoảng cách giữa các điểm(Kun Zhang và nnk., 2015). Trong bài báo này, chúng tôi áp dụng thuật toán K-means để phân lớp các điểm bị loại bỏ khi được gán vào lớp không mặt đất sau khi được phân loại với thuật toán MCC. Những điểm sau phân loại với MCC sẽ được gán nhãn 2 nhóm điểm không mặt đất, nhãn 1 nhóm điểm mặt đất và được lưu trong file có định dạng .las. Định dạng LAS là định dạng nhị phân được chuẩn hóa để lưu trữ dữ liệu đám mây điểm 3 chiều và các thuộc tính điểm cùng với thông tin tiêu đề và các bản ghi độ dài biến đổi cụ thể cho dữ liệu. Hàng triệu điểm dữ liệu được lưu trữ dưới dạng đám mây dữ liệu 3 chiều dưới dạng một loạt các điểm x (kinh độ), y (vĩ độ) và z (độ cao). Ngoài thông tin về toạ độ (x, y, z) của điểm dữ liệu LiDAR có thể lữu trữ những thông tin khác như cường độ của tín hiệu phản xạ, số tín hiệu phản xạ, thời gian đi và về, và nguồn (đường bay) của mỗi điểm (NOAA, 2012). Trong đám mây điểm sau phân loại này, thu nhận những điểm có nhãn là 2 để tiến hành phân loại với K-means. Kết quả này sẽ được sử dụng cho thành lập mô hình 3D của khu vực đo vẽ. Thuật toán được triển khai như sau: Input: đám mây điểm LiDAR Output: điểm sau phân loại For l = 1 to 3 Repeat Lặp tìm S = TPS(U, , f); Lặp tìm S’ = 3x3 Untill điểm không thuộc U < 10% tổng số điểm của nó Phân lớp các điểm còn lại của U vào lớp mặt đất If Pj thuộc nhóm lớp không mặt đất {Chọn số cụm cần phân loại, tính toán tâm của cụm khởi tạo Repeat{ Gán điểm vào cụm có tâm gần nhất Tính toán lại trọng tâm của cụm ∑ ∑ } Untill hội tụ Return tâm cụm, số điểm mỗi cụm} End Hình 2. Kết hợp thuật toán MCC và K-means trong phân loại đám mây điểm LiDAR
- 382 NGHIÊN CỨU KẾT HỢP THUẬT TOÁN MCC VÀ K-MEANS TRONG PHÂN LOẠI ĐÁM MÂY ĐIỂM LIDAR III. THỬ NGHIỆM 3.1. Dữ liệu thử nghiệm Bộ dữ liệu được sử dụng để thử nghiệm trong bài báo là dữ liệu đám mây điểm LiDAR được download từ trang web www.opentopo.sdsc.edu, khu vực khảo sát là rừng quốc gia Tahoe. Với số lượng điểm là 780.405 điểm; Xmin, Ymin = (717068.453734, 4366529.995007); Xmax, Ymax = (717471.08773, 4366736.144926). Đây là dữ liệu thu được từ thiết bị quét được gắn trên không (Airborne LiDAR), mật độ điểm là 8,93 điểm /m 2, quét trên khu vực có diện tích 89,7 km2. Với hệ thống toạ độ Horizontal: NAD83 (2011) UTM Zone 10N meters [EPSG: 26910], Vertical: NAVD88 (Geoid 12a), phép chiếu UTM, đơn vị đo mét. Hệ thống quét có các tham số: ảng 1. Tham số của dữ liệu Tham số Chỉ tiêu Góc quét (Scan FOV) 0 – 500 Tần số quét 0 – 70Hz Bước sóng tia laser 1064 nm Thời gian lấy mẫu 1ns Độ dài thời gian T0 = 40ns, Treturn = 440ns Cường độ (Min, max) (1, 8160) Hình 3. Hình ảnh về khu vực đo vẽ 3.2. Thử nghiệm và đánh giá Lựa chọn tham số s = 3, t = 0,3 cho thuật toán phân loại với MCC. Hình 4. Lựa chọn tham số cho thuật toán MCC Với 3 miền tỉ lệ SD1, SD2, SD3, kết quả phân loại có 344.021 điểm được phân loại vào lớp mặt đất, còn 436.384 điểm thuộc lớp không mặt đất. Hình 5. Kết quả sau phân loại
- Nguyễn Thị Hữu Phương, Đặng Văn Đức, Nguyễn Trường Xuân, Trần Mạnh Trường 383 Hình 6. Các điểm sau phân loại với MCC Sau quá trình phân loại với MCC có 436.384 điểm được gán vào nhóm mặt đất, tham số s và t được lựa chọn lần lượt là 3 và 0,3. Với 3 miền tỉ lệ SD1 = 1,5 (0,5s) với 4 lần lặp, SD2 = 3 (s) với 3 lần lặp, SD3 = 4,5 (1,5s) với 4 lần lặp. Điều kiện hội tụ của thuật toán MCC là 0,0026% (9 điểm được gán vào lớp không mặt đất của miền tỉ lệ 3 với lần lặp thứ 4). Với tỉ lệ điểm không mặt đất trong mỗi miền tỉ lệ như sau: Hình 7. Tỉ lệ phân loại trong mỗi miền Hình 8. DEM của khu vực khảo sát Với 436.384 điểm sau phân loại thuộc lớp không mặt đất, tiếp tục phân loại với thuật toán K-means. Lựa chọn thuộc tính độ cao (Z) của điểm làm thuộc tính phân cụm, điều kiện hội tụ đặt cho thuật toán là 0, số lần lặp lớn nhất là 10. Lựa chọn k = 3 tương ứng với số lớp được mô hình trong mô hình 3D của khu vực khảo sát. Khi lựa chọn k = 3, tâm cụm khi khởi tạo và số lần lặp của thuật toán thay đổi như sau: ảng 2. Khởi tạo tâm cụm và số lần lặp với k = 3 (a) Tâm cụm khi khởi tạo (b) Số lần lặp của thuật toán Tâm cụm trong lần lặp cuối và số điểm được gán vào mỗi cụm:
- 384 NGHIÊN CỨU KẾT HỢP THUẬT TOÁN MCC VÀ K-MEANS TRONG PHÂN LOẠI ĐÁM MÂY ĐIỂM LIDAR ảng 3. Số điểm sau phân loại được gán vào mỗi cụm Hình 9. Kết quả sau phân loại với k = 3 Với k = 2 và k = 3, số điểm lỗi của thuật toán là 0 (số điểm không thuộc về cụm nào), điều kiện hội tụ của thuật toán đều là 0, khoảng cách nhỏ nhất giữa tâm cụm khởi tạo với k = 2 là 118 trong khi đó với k = 3 là 59. Có thể thấy, với số điểm tương đối lớn trên 400 nghìn điểm, thuật toán K-means vẫn cho ra số điểm lỗi là 0, số lần lặp của thuật toán đều nhỏ hơn 10 – số lần lặp có thể chấp nhận. Sau quá trình phân loại, những điểm thuộc nhóm không mặt đất được thu nhận và phân loại chi tiết hơn tuỳ theo mục đích sử dụng. Các điểm sau phân loại được gán nhãn, và phân loại theo độ cao. Từ đó, có thể thành lập được các mô hình về khu vực khảo sát. Hình 10. Mô hình đám mây điểm 3D (a) Zmin (b) Zmax Hình 11. Mô hình TIN với độ cao lớn nhất và nhỏ nhất So sánh mô hình được thành lập với hình ảnh vệ tinh của khu vực khảo sát trong hình 3 có thể thấy mô hình 3D được thành lập sau phân loại với MCC và K-means đáp ứng được yêu cầu. IV. KẾT LUẬN Dữ liệu đám mây điểm LiDAR là dữ liệu chứa nhiều thông tin có ích, do có khả năng thu nhận thông tin trên một khu vực đo vẽ rộng lớn nên số lượng điểm của đám mây điểm thường rất lớn. Do đó, để lựa chọn được một thuật toán phù hợp để phân loại là hoàn toàn cần thiết. Qua thử nghiệm cho thấy, thuật toán MCC là thuật toán phân loại đám
- Nguyễn Thị Hữu Phương, Đặng Văn Đức, Nguyễn Trường Xuân, Trần Mạnh Trường 385 mây điểm tự động, phân chia điểm thành hai lớp mặt đất và không mặt đất. Trong khi đó thuật toán K-means được sử dụng để phân loại lớp điểm không mặt đất, có tỉ lệ điểm lỗi là 0, điều kiện hội tụ là 0. Có thể thấy, K-means có khả năng sử dụng để phân loại đám mây điểm LiDAR, dữ liệu sau phân loại có thể áp dụng cho những bài toán cụ thể hơn. V. LỜI CẢM ƠN Các tác giả biết ơn sự ủng hộ bài báo này từ dự án IoIT (VAST) đề tài cơ sở có mã số CS18.10. VI. TÀI LIỆU THAM KHẢO [1] A. Brzank, C. Heipke. (2005). Classification of LiDAR data into water and land points in coastal areas. ISPRS. [2] Beril Sirmacek, Roderik Lindenbergh. (2015). Automatic classification of trees from laser scanning point clouds. ISPRS, 137-144. [3] Borja Rodriguez - Cuenca, nnk. (2015). Automatic detection and classification of pole-like objects in urban point cloud data using an anomaly detection algorithm. Remote Sensing, 7, 12680-12703. [4] C. Torresan, nnk. (2016). Using classification trees to predict forest structure types from LiDAR data. Annals of forest research, 59. [5] ESRI. (2018, 06 09). What is LiDAR data? Retrieved from http://desktop.arcgis.com/en/arcmap/10.3/manage- data/las-dataset/what-is-lidar-data-.htm. [6] Jeffrey S. Evans, Andrew T. Hudak. (2007). A multiscale curvature algorithm for classifying discrete return LiDAR in forest environments. IEEE transactions on geoscience and remote sensing , 1029-1038. [7] Knowlegde Center. (2015, 5 28). What is point cloud data? Retrieved from https://knowledge.safe.com/articles/257/what-is-a-point-cloud-what-is-lidar.html. [8] Kun Zhang, nnk. (2015). A new kmeans clustering algorithm for point cloud. International Journal of Hybrid Information Technology, 8(9), 157-170. [9] N. Yastikli, Z. Cetin. (2014). Classification of LiDAR data with point based classification methods. ISPRS. [10] Suresh K. Lodha, nnk. (2003). Aerial LiDAR data classification using AdaBoost. [11] Yu chuan chang, nnk. (2008). Automatic classification of LiDAR data in to ground and non-ground points. Remote sensing and Spatial information Sciences, 457-462. [12] Zhuqiang Li, nnk. (2016). A three step approach for TLS point cloud classification. IEEE. THE STUDY COMBINES MCC AND KMEANS ALGORITHMS IN LIDAR POINT CLOUD CLASSIFICATION Nguyen Thi Huu Phuong, Dang Van Duc, Nguyen Truong Xuan, Tran Manh Truong ABSTRACT: In 2007, the authors Jeffrey S. Evans and Andrew T.Hudak proposed the MCC (Multiscale Curvature Classification) algorithm to automatically classify the point cloud into ground and non-ground classess. In the classification process, the authors only recorded the points in the ground class to conduct the DEM creation for the surveyed area, the non-ground point group was eliminated, while this is the point group containing much information there. Desiring to collect and record useful information in this point group, the paper focuses on the study of how to combine the MCC and K-means algorithms to optimize the LiDAR point cloud classification problem.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
NGHIÊN CỨU VÀ XÂY DỰNG THỬ NGHIỆM 3D ENGINE -10
13 p | 84 | 15
-
Nghiên cứu, nâng cao hiệu năng mạng sử dụng phát hiện sớm ngẫu nhiên (RED) bằng cách kết hợp tinh chỉnh ngưỡng dưới và kích thước hàng đợi trung bình
8 p | 27 | 6
-
Phát hiện và thông báo các thay đổi nội dung trong trang Web
8 p | 7 | 5
-
Cải tiến thuật toán Hminer cho việc khai thác tập hữu ích cao trên dữ liệu thao tác thưa
10 p | 15 | 5
-
Sử dụng thuật toán phân lớp FSVM rút trích thông tin văn bản trên internet
12 p | 27 | 5
-
Ứng dụng luật kết hợp khai phá dữ liệu hỗ trợ định hướng việc làm
10 p | 58 | 5
-
So sánh các phương pháp kết hợp giữ xử lý ảnh và máy học trong việc nhận dạng mẫu ứng dụng cho nhận biết bệnh trên lá cà phê
9 p | 34 | 4
-
Nhận diện vùng da mặt bằng phương pháp kết hợp một số thuật toán dựa trên tính bất biến của màu
6 p | 38 | 4
-
COOC CFI: Thuật toán hiệu quả khai thác tập phổ biến đóng trên dữ liệu giao dịch
8 p | 51 | 3
-
Khai thác tập phổ biến từ dữ liệu luồng bằng cách sử dụng thuật toán di truyền
12 p | 12 | 3
-
Phát hiện luật kết hợp liên kết chuỗi thời gian từ cơ sở dữ liệu định lượng có yếu tố thời gian
16 p | 20 | 2
-
Khảo sát thuật toán OSD sử dụng bộ mã RS và kỹ thuật điều chế QAM
5 p | 26 | 2
-
Thuật toán hiệu quả khai thác tập phổ biến tối đại trên cơ sở dữ liệu giao dịch lớn
8 p | 70 | 2
-
Rút gọn tập luật mờ trích xuất từ máy học Véc-tơ hỗ trợ bằng cách tích hợp thuật toán phân cụm k-Means
7 p | 26 | 2
-
Phương pháp kết hợp dựa trên mô hình học sâu cho phân tích tình cảm trên hình ảnh
10 p | 5 | 2
-
Nghiên cứu phương pháp tính toán lựa chọn mang treo tối ưu cho máy bay khi tiêu diệt các loại mục tiêu mặt đất, mặt nước
10 p | 57 | 1
-
Nâng cao hiệu quả phát hiện tấn công APT dựa trên học sâu kết hợp
5 p | 6 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn