intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Phương pháp giải bài tập vật lý luyện thi đại học

Chia sẻ: Nguyen Binh | Ngày: | Loại File: PDF | Số trang:138

328
lượt xem
77
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo phương pháp giải bài tập vật lý luyện thi đại học giúp các bạn ôn tập tốt môn Vật lí và chuẩn bị cho kì thi tuyển sinh sắp tới.

Chủ đề:
Lưu

Nội dung Text: Phương pháp giải bài tập vật lý luyện thi đại học

  1. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 1 CHƯƠNG I: DAO ĐÔNG CƠ PHẦN A: LÝ THUYẾT CHƯƠNG 1. Phương trình dao động: x = Acos(t + ) 2. Vận tốc tức thời: v = -Asin(t + )  v luôn cùng chiều với chiều chuyển động (vật chuyển động theo chiều dương thì v>0, theo chiều âm thì v
  2. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 2 13. Bài toán tính quãng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 0 < t < T/2. Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và chuyển đường tròn đều. Góc quét  = t. Quãng đường lớn nhất khi vật đi từ M1 đến M2 đối xứng qua trục sin (hình 1)  S Max  2A sin 2 Quãng đường nhỏ nhất khi vật đi từ M1 đến M2 đối xứng qua trục cos (hình 2)  M2 M1 S Min  2 A(1  cos ) M2 2 P  Lưu ý: + Trong trường hợp t > T/2 2 T A P A Tách t  n  t ' -A P2 O P x -A O  x 2 1 2 T trong đó n  N * ;0  t '  2 M1 T Trong thời gian n quãng đường 2 luôn là 2nA Trong thời gian t’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian t: S Max S vtbMax  và vtbMin  Min với SMax; SMin tính như trên. t t 13. Các bước lập phương trình dao động dao động điều hoà: * Tính  * Tính A  x  Acos(t0   ) * Tính  dựa vào điều kiện đầu: lúc t = t0 (thường t0 = 0)   v   Asin(t0   ) Lưu ý: + Vật chuyển động theo chiều dương thì v > 0, ngược lại v < 0 + Trước khi tính  cần xác định rõ  thuộc góc phần tư thứ mấy của đường tròn lượng giác (thường lấy -π <  ≤ π) 14. Các bước giải bài toán tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wđ, F) lần thứ n * Giải phương trình lượng giác lấy các nghiệm của t (Với t > 0  phạm vi giá trị của k ) * Liệt kê n nghiệm đầu tiên (thường n nhỏ) * Thời điểm thứ n chính là giá trị lớn thứ n Lưu ý:+ Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều 15. Các bước giải bài toán tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wđ, F) từ thời điểm t1 đến t2. * Giải phương trình lượng giác được các nghiệm * Từ t1 < t ≤ t2  Phạm vi giá trị của (Với k  Z) * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó. GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  3. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 3 Lưu ý: + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều. + Trong mỗi chu kỳ (mỗi dao động) vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần. 16. Các bước giải bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian t. Biết tại thời điểm t vật có li độ x = x0. * Từ phương trình dao động điều hoà: x = Acos(t + ) cho x = x0 Lấy nghiệm t +  =  với 0     ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc t +  = -  ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau (trước) thời điểm đó t giây là  x  Acos(t   )  x  Acos(t   )  hoặc  v   A sin(t   ) v   A sin(t   ) 17. Dao động có phương trình đặc biệt: * x = a  Acos(t + ) với a = const Biên độ là A, tần số góc là , pha ban đầu  x là toạ độ, x0 = Acos(t + ) là li độ. Toạ độ vị trí cân bằng x = a, toạ độ vị trí biên x = a  A Vận tốc v = x’ = x0’, gia tốc a = v’ = x” = x0” Hệ thức độc lập: a = -2x0 v A2  x0  ( )2 2  * x = a  Acos2(t + ) (ta hạ bậc) Biên độ A/2; tần số góc 2, pha ban đầu 2. II. CON LẮC LÒ XO k 2 m -A 1. Tần số góc:   ; chu kỳ: T   2 ; tần số: nén m  k -A 1  1 k l l f    giãn O T 2 2 m O giãn Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và vật A dao động trong giới hạn đàn hồi A 1 1 x 2. Cơ năng: W  m 2 A2  kA2 x 2 2 Hình a (A < l) Hình b (A > l) 3. * Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB: mg l l   T  2 k g * Độ biến dạng của lò xo khi vật ở VTCB với con lắc lò xo Giã nằm trên mặt phẳng nghiêng có góc nghiêng α: Né 0 A -  l n n mg sin  l A x l   T  2  k g sin  + Chiều dài lò xo tại VTCB: lCB = l0 + l (l0 là chiều dài tự nhiên) + Chiều dài cực tiểu (khi vật ở vị trí cao nhất): lMin = l0 + l – A Hình vẽ thể hiện thời gian lò xo + Chiều dài cực đại (khi vật ở vị trí thấp nhất): lMax = l0 + l + A nén và giãn trong 1 chu kỳ (Ox hướng xuống)  lCB = (lMin + lMax)/2 + Khi A >l (Với Ox hướng xuống): GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  4. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 4 - Thời gian lò xo nén 1 lần là thời gian ngắn nhất để vật đi từ vị trí x1 = -l đến x2 = -A. - Thời gian lò xo giãn 1 lần là thời gian ngắn nhất để vật đi từ vị trí x1 = -l đến x2 = A, Lưu ý: Trong một dao động (một chu kỳ) lò xo nén 2 lần và giãn 2 lần 4. Lực kéo về hay lực hồi phục F = -kx = -m2x Đặc điểm: * Là lực gây dao động cho vật. * Luôn hướng về VTCB * Biến thiên điều hoà cùng tần số với li độ 5. Lực đàn hồi là lực đưa vật về vị trí lò xo không biến dạng. Có độ lớn Fđh = kx* (x* là độ biến dạng của lò xo) * Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo không biến dạng) * Với con lắc lò xo thẳng đứng hoặc đặt trên mặt phẳng nghiêng + Độ lớn lực đàn hồi có biểu thức: * Fđh = kl + x với chiều dương hướng xuống * Fđh = kl - x với chiều dương hướng lên + Lực đàn hồi cực đại (lực kéo): FMax = k(l + A) = FKmax (lúc vật ở vị trí thấp nhất) + Lực đàn hồi cực tiểu: * Nếu A < l  FMin = k(l - A) = FKMin * Nếu A ≥ l  FMin = 0 (lúc vật đi qua vị trí lò xo không biến dạng) Lực đẩy (lực nén) đàn hồi cực đại: FNmax = k(A - l) (lúc vật ở vị trí cao nhất) 6. Một lò xo có độ cứng k, chiều dài l được cắt thành các lò xo có độ cứng k1, k2, … và chiều dài tương ứng là l1, l2, … thì có: kl = k1l1 = k2l2 = … 7. Ghép lò xo: 1 1 1 2 2 2 * Nối tiếp    ...  cùng treo một vật khối lượng như nhau thì: T = T1 + T2 k k1 k2 1 1 1 * Song song: k = k1 + k2 + …  cùng treo một vật khối lượng như nhau thì: 2  2  2  ... T T1 T2 8. Gắn lò xo k vào vật khối lượng m1 được chu kỳ T1, vào vật khối lượng m2 được T2, vào vật khối lượng m1+m 2 được chu kỳ T3, vào vật khối lượng m1 – m2 (m1 > m2) được chu kỳ T4. Thì ta có: T32  T12  T22 và T42  T12  T22 9. Đo chu kỳ bằng phương pháp trùng phùng Để xác định chu kỳ T của một con lắc lò xo (con lắc đơn) người ta so sánh với chu kỳ T0 (đã biết) của một con lắc khác (T  T0). Hai con lắc gọi là trùng phùng khi chúng đồng thời đi qua một vị trí xác định theo cùng một chiều. TT0 Thời gian giữa hai lần trùng phùng   T  T0 Nếu T > T0   = (n+1)T = nT0. Nếu T < T0   = nT = (n+1)T0. với n  N* III. CON LẮC ĐƠN g 2 l 1  1 g 1. Tần số góc:   ; chu kỳ: T   2 ; tần số: f    l  g T 2 2 l Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và 0
  5. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 5 s 2. Lực hồi phục F   mg sin   mg  mg   m 2 s l Lưu ý: + Với con lắc đơn lực hồi phục tỉ lệ thuận với khối lượng. + Với con lắc lò xo lực hồi phục không phụ thuộc vào khối lượng. 3. Phương trình dao động: s = S0cos(t + ) hoặc α = α0cos(t + ) với s = αl, S0 = α0l  v = s’ = -S0sin(t + ) = -lα0sin(t + )  a = v’ = -2S0cos(t + ) = -2lα0cos(t + ) = -2s = -2αl Lưu ý: S0 đóng vai trò như A còn s đóng vai trò như x 4. Hệ thức độc lập: * a = -2s = -2αl v * S02  s 2  ( )2  v2 *  02   2  gl 1 1 mg 2 1 1 5. Cơ năng: W  m 2 S02  S 0  mgl 0  m 2l 2 0 2 2 2 2 l 2 2 6. Tại cùng một nơi con lắc đơn chiều dài l1 có chu kỳ T1, con lắc đơn chiều dài l2 có chu kỳ T2, con lắc đơn chiều dài l1 + l2 có chu kỳ T2,con lắc đơn chiều dài l1 - l2 (l1>l2) có chu kỳ T4. Thì ta có: T32  T12  T22 và T42  T12  T22 7. Khi con lắc đơn dao động với 0 bất kỳ. Cơ năng, vận tốc và lực căng của sợi dây con lắc đơn W = mgl(1-cos0); v2 = 2gl(cosα – cosα0) và TC = mg(3cosα – 2cosα0) Lưu ý: - Các công thức này áp dụng ĐÚNG cho cả khi 0 có giá trị lớn - Khi con lắc đơn dao động điều hoà (0 0 thì đồng hồ chạy chậm (đồng hồ đếm giây sử dụng con lắc đơn) * Nếu T < 0 thì đồng hồ chạy nhanh * Nếu T = 0 thì đồng hồ chạy ĐÚNG T * Thời gian chạy SAI mỗi ngày (24h = 86400s):   86400(s ) T 10. Khi con lắc đơn chịu thêm tác dụng của lực phụ không đổi: Lực phụ không đổi thường là:     * Lực quán tính: F  ma , độ lớn F = ma ( F  a )   Lưu ý: + Chuyển động nhanh dần đều a  v ( v có hướng chuyển động)   + Chuyển động chậm dần đều a  v GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  6. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 6     * Lực điện trường: F  qE , độ lớn F = qE (Nếu q > 0  F  E ; còn nếu q < 0    F  E )  * Lực đẩy Ácsimét: F = DgV ( F luông thẳng đứng hướng lên) Trong đó: D là khối lượng riêng của chất lỏng hay chất khí. g là gia tốc rơi tự do.  V là thể tích của phần vật chìm trong chất lỏng hay chất khí đó.    Khi đó: P '  P  F gọi là trọng lực hiệu dụng hay trong lực biểu kiến (có vai trò như trọng lực   P)    F   g '  g  gọi là gia tốc trọng trường hiệu dụng hay gia tốc trọng trường biểu kiến. m l Chu kỳ dao động của con lắc đơn khi đó: T '  2 g' Các trường hợp đặc biệt:  * F có phương ngang: + Tại VTCB dây treo lệch với phương thẳng đứng một góc có: F tan   P F + g '  g 2  ( )2 m  F * F có phương thẳng đứng thì g '  g  m  F + Nếu F hướng xuống thì g '  g  m  F + Nếu F hướng lên thì g '  g  m IV. CON LẮC VẬT LÝ mgd I 1 mgd 1. Tần số góc:   ; chu kỳ: T  2 ; tần số f  I mgd 2 I Trong đó: m (kg) là khối lượng vật rắn d (m) là khoảng cách từ trọng tâm đến trục quay I (kgm2) là mômen quán tính của vật rắn đối với trục quay 2. Phương trình dao động α = α0cos(t + ) Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và 0
  7. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 7 3. Nếu một vật tham gia đồng thời nhiều dao động điều hoà cùng phương cùng tần số x1 = A1cos(t + 1; x2 = A2cos(t + 2) … thì dao động tổng hợp cũng là dao động điều hoà cùng phương cùng tần số x = Acos(t + ). Chiếu lên trục Ox và trục Oy  Ox . Ta được: Ax  Acos  A1cos1  A2cos2  ... Ay  A sin   A1 sin 1  A2 sin 2  ... Ay  A  Ax2  Ay và tan   2 với  [Min;Max] Ax VI. DAO ĐỘNG TẮT DẦN – DAO ĐỘNG CƯỠNG BỨC - CỘNG HƯỞNG 1. Một con lắc lò xo dao động tắt dần với biên độ A, hệ số ma sát µ. * Quãng đường vật đi được đến lúc dừng lại x là:  kA2  2 A2 S  t 2  mg 2  g O * Độ giảm biên độ sau mỗi chu kỳ là: 4  mg 4  g A   2 k  T * Số dao động thực hiện được: A Ak 2 A N   A 4  mg 4  g * Thời gian vật dao động đến lúc dừng lại: AkT  A 2 t  N .T   (Nếu coi dao động tắt dần có tính tuần hoàn với chu kỳ T  ) 4 mg 2 g  3. Hiện tượng cộng hưởng xảy ra khi: f = f0 hay  = 0 hay T = T0 Với f, , T và f0, 0, T0 là tần số, tần số góc, chu kỳ của lực cưỡng bức và của hệ dao động. CÁC DẠNG BÀI TẬP CƠ BẢN Dạng 1: Viết phương trình dao động diều hoà. Xác định các đặc trưng của một dao động điều hoà Chọn hệ quy chiếu: + Trục ox... + gốc toạ độ tại VTCB + Chiều dương... + gốc thời gian... Phương trình dao động có dạng: x = Acos(t + ) cm Phương trình vận tốc: v = -Asin(t + ) cm/s 1) Xác định tần số góc : (>0) 2 t +  = 2f = , với T  , N: tống số dao động T N k + Nếu con lắc lò xo:   , ( k: N/m, m: kg) m k g g + khi cho độ giản của lò xo ở VTCB  : k .  mg     v m   + 2 2 A x 2) Xác định biên độ dao động A:(A>0) d + A= , d: là chiều dài quỹ đạo của vật dao động 2    min + Nếu đề cho chiều daig lớn nhất và nhở nhất của lò xo: A  max 2 2 v2 + Nếu đề cho ly độ x ứng với vận tốc v thì ta có: A = x  2 (nếu buông nhẹ v = 0)  GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  8. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 8 v2 a 2 + Nếu đề cho vận tốc và gia tốc: A 2   2 4 v + Nếu đề cho vận tốc cực đại: Vmax thì: A  Max a + Nếu đề cho gia tốc cực đại aMax : thì A  Max 2 + Nếu đề cho lực phục hồi cực đại Fmax thì  F max = kA 2W + Nếu đề cho năng lượng của dao động Wthì  A  k 3) Xác định pha ban đầu : (      ) Dựa vào cách chọn gốc thời gian để xác định ra   x0  x  x0  x0  Acos cos  A  Khi t=0 thì      = ? v  v0 v0   A sin sin   v0   A cos  0 0  Acos    ? + Nếu lúc vật đi qua VTCB thì   v0  v0   A sin  A    sin   0  A  ?   x0  x0  Acos A  0   ? + Nếu lúc buông nhẹ vật   cos  0   A sin sin   0 A  ?  Chú ý:  khi thả nhẹ, buông nhẹ vật v0=0 , A=x  Khi vật đi theo chiều dương thì v>0 (Khi vật đi theo chiều âm thì v0 và k  N* khi b  
  9. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 9 2 2 2 2v  v  Ta dùng A  x   1   x   A2   1      4) Tìm vận tốc khi đi qua ly độ x1: 2 2 v  2 Ta dùng A  x   1   v   A2  x 2 khi vật đi theo chiều dương thì v>0   Dạng 3: Xác định quãng đường và số lần vật đi qua ly độ x0 từ thời điểm t1 đến t2 Phương trình dao động có dạng: x = Acos(t + ) cm Phương trình vận tốc: v = -Asin(t + ) cm/s t t m 2 Tính số chu kỳ dao động từ thời điểm t1 đến t2 : N  2 1  n  , với T  T T  Trong một chu kỳ : + vật đi được quãng đường 4A + Vật đi qua ly độ bất kỳ 2 lần * Nếu m= 0 thì: + Quãng đường đi được: ST = 4nA + Số lần vật đi qua x0 là MT= 2n * Nếu m  0 thì: + Khi t=t1 ta tính x1 = Acos(t1 + )cm và v1 dương hay âm (không tính v1) + Khi t=t2 ta tính x2 = Acos(t2 + )cm và v2 dương hay âm (không tính v2) m Sau đó vẽ hình của vật trong phần lẽ chu kỳ rồi dựa vào hình vẽ để tính Slẽ và số lần Mlẽ vật T đi qua x0 tương ứng. Khi đó: + Quãng đường vật đi được là: S=ST +Slẽ + Số lần vật đi qua x0 là: M=MT+ Mlẽ  x  x0  x2 * Ví dụ:  1 ta có hình vẽ: v1  0, v2  0 Khi đó + Số lần vật đi qua x0 là Mlẽ= 2n -A x2 x0 O x1 X A + Quãng đường đi được: Slẽ = 2A+(A-x1)+(A- x2 ) =4A-x1- x2 Dạng 4: Xác định lực tác dụng cực đại và cực tiểu tác dụng lên vật và điểm treo lò xo - chiều dài lò xo khi vật dao động 1) Lực hồi phục( lực tác dụng lên vật):    Lực hồi phục: F   kx  ma : luôn hướn về vị trí cân bằng Độ lớn: F = k|x| = m2|x| . Lực hồi phục đạt giá trị cực đại F max = kA khi vật đi qua các vị trí biên (x =  A). Lực hồi phục có giá trị cực tiểu F min = 0 khi vật đi qua vị trí cân bằng (x = 0). 2) Lực tác dụng lên điểm treo lò xo: Lực tác dụng lên điểm treo lò xo là lực đàn hồi: F  k |   x | + Khi con lăc lò xo nằm ngang   =0 mg g + Khi con lắc lò xo treo thẳng đứng:   =  2 . k  mg sin  + Khi con lắc nằm trên mặt phẳng nghiêng 1 góc :   = k a) Lực cực đại tác dụng lện điểm treo là: Fmax  k(  A) b) Lực cực tiểu tác dụng lên điểm treo là: + khi con lắc nằm ngang: Fmin =0 GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  10. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 10 + khi con lắc treo thẳng đứng hoặc nằm trên mặt phẳng nghiêng 1 góc  : Nếu   >A thì Fmin  k(  A) Nếu   A thì Fmin =0 3) Lực đàn hồi ở vị trí có li độ x (gốc O tại vị trí cân bằng ): + Khi con lăc lò xo nằm ngang F= kx + Khi con lắc lò xo treo thẳng đứng hoặc nằm nghiêng 1 góc  : F = k|  + x| 4) Chiều dài lò xo: lo : là chiều dài tự nhiên của lò xo: a) khi lò xo nằm ngang: Chiều dài cực đại của lò xo :  max =  o + A. Chiều dài cực tiểu của lò xo:  min =  o + A. b) Khi con lắc lò xo treo thẳng đứng hoặc nằm nghiêng 1 góc  : Chiều dài khi vật ở vị trí cân bằng :  cb =  o +   Chiều dài cực đại của lò xo:  max =  o +   + A. Chiều dài cực tiểu của lò xo:  min =  o +   – A. Chiều dài ở ly độ x:  =  0+  +x Dạng 5: Xác định năng lượng của dao động điều hoà Phương trình dao động có dạng: x = Acos(t + ) m Phương trình vận tốc: v = -Asin(t + ) m/s 1 2 1 a) Thế năng: Wt = kx = k A2cos2(t + ) 2 2 1 1 1 b) Động năng: Wđ = mv2 = m2A2sin2(t + ) = kA2sin2(t + ) ; với k = m2 2 2 2 1 1 c) Cơ năng: W = Wt + Wđ = k A2 = m2A2. 2 2 + Wt = W - Wđ + Wđ = W – Wt A T Khi Wt = Wđ  x =   thời gian Wt = Wđ là : t  2 4 + Thế năng và động năng của vật biến thiên tuần hoàn với cùng tần số góc ’ = 2, tần số dao T động f’ =2f và chu kì T’ = . 2 Chú ý: Khi tính năng lượng phải đổi khối lượng về kg, vận tốc về m/s, ly độ về mét Dạng 6: Xác định thời gian ngắn nhất vật đi qua ly độ x1 đến x2 Ta dùng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều để tính. Khi vật dao động điều hoà từ x1 đến x2 thì tương ứng vứoiu vật chuyển động tròn đều từ M đến N(chú ý x1 và x2 là hình chiếu vuông góc của M và N lên trục OX Thời gian ngắn nhất vật dao động đi từ x1 đến x2 bằng thời gian vật chuyển động tròn đều từ M đến N MON ˆ Δt = t MN = ˆ ˆ ˆ T , MON  x1MO  ONx2 với 360 N M ˆ | x1 | ˆ | x2 | Sin(x1MO)  , Sin(ONx2 )  A A A T + khi vật đi từ: x = 0  x   thì t  -A x2 O x1 N X 2 12 A T + khi vật đi từ: x    x=  A thì t  2 6 GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  11. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 11 A 2 A 2 T + khi vật đi từ: x=0  x   và x    x=  A thì t  2 2 8 A 2 T + vật 2 lần liên tiếp đi qua x   thì t  2 4 S Vận tốc trung bình của vật dao dộng lúc này: v  t  S được tính như dạng 3. Dạng 7: Hệ lò xo ghép nối tiếp - ghép song song và xung đối. 1). Lò xo ghép nối tiếp: a) Độ cứng của hệ k: Hai lò xo có độ cứng k1 và k2 ghép nối tiếp có thể xem k1 k2 như một lò xo có độ cứng k thoả mãn biểu thức: m 1 1 1   (1) k k1 k 2 Chứng minh (1): Khi vật ở ly độ xthì: kx, F1  k1 x1 , F2  k 2 x 2 f  F  F1  F2  F  F1  F2   1 1 1 kk   F  F1  F2   F F1 F2  = + hay k = 1 2 x  x  x 2  x T  x số b) Chu 1kỳ dao động x-1 tần 2 dao động: k  k  k k k1 k 2 k1 + k 2  2 1 2 m 1 T + Khi chỉ có lò xo 1( k1): T1  2   12 2 k m k1 4 mT + Khi chỉ có lò xo 2( k2): T2  2 1  1  22 k km 4 m T 2 1 + Khi ghép nối tiếp 2 lò xo trên: T 22 2 2   2 2 1 1 1 T T T k k 4 2 m Mà   nên  12  22  T 2 = T12 + T12 k k1 k 2 1 4 2 1 4 m 4 m m 1 Tần số dao động: = + 2 2 2 b. Lò xo ghép song f song: f2 f1 Hai lò xo có độ cứng k1 và k2 ghép song song có thể xem như một lò xo có độ cứng k thoả mãn biểu thức: k = k1 + k2 (2) Chứng minh (2): L1, k1 Khi vật ở ly độ f thì: F1  k1x1 , F2  k 2 x 2 x  kx,  x  x1  x 2   x  x1  x 2    x  x1  x 2   k = k 1 + k 22, k2 L b) F1 kỳ dao động F  tần số dao động: F Chu F2 F  T - F kx  k1 x1  k 2 x 2  1 2 m 4 2 m + Khi chỉ có lò xo1( k1): T1  2  k1  k m 422 m T + Khi chỉ có lò xo2( k2): T2  2 1  k2  1 2 k2 m T2 4 2 m + Khi ghép nối tiếp 2 2lò xo trên: T  22 2  k  4 m 4 m 4 m k 1 T2 1 1 Mà k = k1 + k2 nên 2  2  2  = + 2T 2 T1 2 T2 T 2 T2 T2 Tần số dao động: f = f + f 1 1 1 2 c) Khi ghép xung đối công thức giống ghép song song L1, k1 L2, k2 Lưu ý: Khi giải các bài toán dạng này, nếu gặp trường hợp một lò xo có độ dài tự nhiên  0 (độ cứng k0) được cắt thành hai lò xo có chiều dài lần lượt là  1 (độ cứng k1) và  2 (độ cứng k2) thì ta có: k0  0 = k1  1 = k2  2 ES const Trong đó k0 = = ; E: suất Young (N/m2); S: tiết diện ngang (m2) 0 0 GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  12. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 12 Dạng 8 : Chứng minh hệ dao động điều hoà Trong trường hợp phải chứng minh cơ hệ dao động điều hoà trên cơ sở lực đàn hồi tác dụng: F = -kx hoặc năng lượng của vật dao động (cơ năng) W = Wt + Wđ, ta tiến hành như sau: Cách 1: Dùng phương pháp động lực học: + Phân tích lực tác dụng lên vật + Chọn hệ trục toạ độ Ox   + Viết phương trình định luật II Newtơn cho vật:  F  ma chiếu phương trình này lên OX để suy ra: x'' = - 2x : vậy vật dao dộng điều hoà với tàn số góc  Cách 2: Dùng phương pháp năng lượng: 1 * Vì W = Wt + Wđ trong đó: Wt = kx2 (con lắc lò xo) 1 2 Wđ = mv2 2 1 1 Áp dụng định luật bảo toàn cơ năng: W = Wt + Wđ = kx2 + mv2= const 2 2 + Lấy đạo hàm hai vế theo t phương trình này chú ý: a = v' = x'' + Biến đổi để dẫn đến: x'' = -2x vậy vật dao động điều hoà với tần số góc  Con lắc đơn Dạng 9: Viết phương trình dao động của con lắc đơn - con lắc vật lý- chu kỳ dao động nhỏ 1) Phương trình dao động. Chọn: + Trục OX trùng tiếp tuyến với quỹ đạo + gốc toạ độ tại vị trí cân bằng + chiều dương là chiều lệch vật + gốc thời gian ..... Phương trình ly độ dài: s=Acos(t + ) m v = - Asin(t + ) m/s * Tìm >0: 2 t +  = 2f = , với T  , N: tống số dao động g T N +  , ( l:chiều dài dây treo:m, g: gia tốc trọng trường tại nơi ta xét: m/s2)  mgd + với d=OG: khoảng cách từ trọng tâm đến trục quay. I I: mômen quán tính của vật rắn. v + 2 2 * Tìm A>0: 2A  s v + A 2  s 2  2 với s   .    MN + khi cho chiều dài quỹ đạo là một cung tròn MN : A  2 + A   0 . ,  0 : ly độ góc: rad. * Tìm  (      ) Dựa vào cách chọn gốc thời gian để xác định ra   x0  x  x0  x  Acos cos  A  Khi t=0 thì    0   = ? v  v0 v0   A sin sin   v0   A s A Phươg trình ly giác:  = =  0 cos(t + ) rad. với  0  rad   2) Chu kỳ dao động nhỏ. GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  13. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT  LUYỆN g LÝ T 2 THI ĐẠI HỌC Trang 13     + Con lăc đơn: T  2  4 2 g   4 2  g    T 2  T 2 mgd I  I + Con lắc vật lý: T  2  4 2  mgd  g  4 I 2   2 T md Dạng 10: Năng lượng con lắc đơn - Xác định vận tốc của vật Lực căng dây treo khi vật đi qua ly độ góc α 1) Năng lượng con lắc đơn: Chọn mốc thế năng tại vị trí cân bằng O 1 0 + Động năng: Wđ= mv 2  2 + Thế năng hấp dẫn ở ly độ  : Wt = mg(1 - cosα)  1 N τ + Cơ năng: W= Wt+Wđ= m 2 A 2 2  A 1 O Khi góc nhỏ: Wt  mg (1  cos )  mg 2 P 2 1 W= mg 20 2 2) Tìm vận tốc của vật khi đi qua ly độ  (đi qua A): Áp dụng định luật bảo toàn cơ năng ta có: Cơ năng tại biên = cơ năng tại vị trí ta xét WA=WN WtA+WđA=WtN+WđN 1  mg(1  cos ) + mv A = mg(1  cos 0 ) +0 2 2  vA  2g(cos  cos 0 )  v A = ± 2g(cosα - cosα 0 ) 2 3) Lực căng dây(phản lực của dây treo) treo khi đi qua ly độ  (đi qua A):     Theo Định luật II Newtơn: P + τ =m a chiếu lên τ ta được v2 v2   mgcos  ma ht  m A    m A  mgcos  m2g(cos  cos 0 )  mgcos    τ = mg(3cosα - 2cosα 0 ) 4) Khi góc nhỏ   100 sin     v 2  g( 0   2 ) A 2     2 khi đó  1 2 2 cos  1    mg(1  2 0  3 )  2  2 Chú ý: + Khi đi qua vị trí cân bằng(VTCB)   0 + Khi ở vị trí biên    0 Dạng 11 : Xác định chu kỳ con lắc ở độ cao h độ sâu d khi dây treo không giản GM Gia tốc trọng trường ở mặt đất: g = ; R: bán kính trái Đất R=6400km R2 1) Khi đưa con lắc lên độ cao h: GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  14. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 14 GM g Gia tốc trọng trường ở độ cao h: g h  2  . (R  h) h 2 (1  ) R  Chu kỳ con lắc dao động ĐÚNG ở mặt đất: T1  2 (1) g  Chu hỳ con lắc dao động SAI ở độ cao h: T2  2 (2) gh T1 gh gh 1 T 1 h   mà   1   T2 = T1 (1 + ) T2 g g 1 h T2 1  h R R R Khi đưa lên cao chu kỳ dao động tăng lên. 2) Khi đưa con lắc xuống độ sâu d: d *ở độ sâu d: g d = g(1 - ) R 4 m(  (R  d)3 .D) Chúng minh: Pd = Fhd  mg d  G 3 D: khối lượng riêng trái Đất (R  d) 2 4 (  R 3 .D)(R  d)3 M(R  d)3 GM d d  gd  G 3 2 3 G 2 3  2 .(1  )  g d = g(1- ) (R  d) .R (R  d) .R R R R  *Chu kỳ con lắc dao động ở độ sâu d: T2  2 (3) gd T1 gd gd d T1 1d   mà  1  T2 =  T1 (1 + ) T2 g g R d 2R 1- R Khi đưa xuống độ sâu chu kỳ dao động tăng lên nhưng tăng ít hơn đưa lên độ cao Dạng 12 : Xác định chu kỳ khi nhiệt độ thay đổi (dây treo làm bằng kim loại) Khi nhiệt độ thay đổi: Chiều dài biến đổi theo nhiệt độ :  =  0 (1 +  t).  : là hệ số nở dài vì nhiệt của kim loại làm dây treo con lắc.  0 : chiều dài ở 00C 1 Chu kỳ con lắc dao động ĐÚNG ở nhiệt độ t1(0C): T1  2 (1) g 2 T  Chu kỳ con lắc dao động SAI ở nhiệt độ t2(0C): T2  2 (2)  1  1 g T2 2    0 (1   t1 )  1   t1 1 Ta có:  1  1   1   (t 2  t1 ) vì   1  2   0 (1   t 2 ) 2 1   t2 2 T 1 T1 1  1  1   (t 2  t1 )  T2   T1 (1   (t 2  t1 )) T2 2 1 2 1   (t 2  t1 ) 2 1 Vậy T2 = T1 (1 + λ(t 2 - t1 )) 2 + khi nhiệt độ tăng thì chu kỳ dao động tăng lên GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  15. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 15 + khi nhiệt độ giảm thì chu kỳ dao động giảm xuống T 1 h Chú ý: + khi đưa lên cao mà nhiệt độ thay đổi thì: 1  1 - λ(t 2 - t1 ) - T2 2 R T 1 d + khi đưa lên xuống độ sâu d mà nhiệt độ thay đổi thì: 1  1 - λ(t 2 - t1 ) - T2 2 2R Dạng 13 : Xác định thời gian dao động nhanh chậm trong một ngày đêm. Một ngày đêm: t = 24h = 24.3600 = 86400s. Chu kỳ dao động ĐÚNG là: T1 chu kỳ dao động SAI là T2 t + Số dao động con lắc dao động ĐÚNG thực hiện trong một ngày đêm: N1  T1 t + Số dao động con lắc dao động SAI thực hiện trong một ngày đêm: N 2  T2 1 1 + Số dao đông SAI trong một ngày đêm: N | N1  N1 | t |  | T2 T1 T + Thời gian chạy SAI trong một ngày đêm là:   T1.N  t | 1  1| T2  Nếu chu kỳ tăng con lắc dao động chậm lại  Nếu chu kỳ giảm con lắc dao động nhanh lên h * Khi đưa lên độ cao h con lắc dao động chậm trong một ngày là:   t. R d * Khi đưa xuống độ sâu h con lắc dao động chậm trong một ngày là: Δτ = t. 2R 1 * Thời gian chạy nhanh chậm khi nhiệt độ thay đổi trong một ngày đêm là: Δτ = t λ | t 2 - t 1 | 2 h 1 * Thời gian chạy nhanh chậm tổng quát: Δτ = t |  λ(t 2 - t 1 ) | R 2 Dạng 13 : Xác định chu kỳ con lăc vấp(vướng) đinh biên độ sau khi vấp đinh 1) Chu kỳ con lắc: 1 * Chu kỳ cn lắc trước khi vấp đinh: T1  2 ,  1 : chiều dài con lắc trước khi vấp đinh g 2 * Chu kỳ con lắc sau khi vấp đinh: T2  2 ,  2 : chiều dài con lắc g sau khi vấp đinh 0 1 * Chu kỳ của con lắc: T  (T1  T2 ) 2 0 A 2) Biên độ góc sau khi vấp đinh β0 : N Chọn mốc thế năng tại O. Ta có: WA=WN O  WtA=WtN  mg 2 (1  cos 0 )  mg1 (1  cos 0 )   2 (1  cos 0 )  1 (1  cos 0 ) vì góc nhỏ nên 1 1 2    2 (1  (1  02 ))  1 (1  (1   0 )  β0 = α 0 1 : biên độ góc sau khi vấp đinh. 2 2 2 GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  16. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 16 Biên độ dao động sau khi vấp đinh: A' = β 0 . 2 Dạng 14: Xác định chu kỳ con lắc bằng phương pháp trùng phùng Cho hai con lắc đơn: Con lắc 1 chu kỳ T1 đã biết Con lắc 2 chu kỳ T2 chưa biết T2  T1 Cho hai con lắc dao động trong mặt phẳng thẳng đứng song song trước mặt một người quan sát. Người quan sát ghi lại những lần chúng đi qua vị trí cân bằng cùng lúc cùng chiều(trùng phùng). Gọi  là thời gian hai lần trùng phùng liên tiếp nhau a) Nếu T1 > T2 : con lắc T2 thực hiện nhiều hơn con lắc T1 một dao động   T2  n  1   1 1 1 1 ta có   nT1  ( n  1)T2    T2   T2   = + n    1 1 T2 T1 θ 1    T1 T1 T1  b) Nếu T1 < T2 : con lắc T1 thực hiện nhiều hơn con lắc T2 một dao động   T2  n   1 1 1 1 ta có   nT2  (n  1)T1    T2   T2   = - n   1  1 1 T2 T1 θ 1    T1 T1 T1  Dạng 15 : Xác định chu kỳ con lắc khi chịu tác dụng thêm của  ngoại lực không đổi F .  * Chu kỳ con lắc lúc đầu: T1  2 (1) g 0  * Chu kỳ con lắc lúc sau: T2  2 (2) g hd  N Khi con lắc chịu tác dụng thêm của ngoại lực không đổi F khi đó:     Trọng lực hiệu dụng(trọng lực biểu kiến): Phd  F  P  F P O       F  mg hd  F  mg  g hd  g  m   1) Khi F  P (cùng hướng) F g hd  g  khi đó T2 T1: chu kỳ tăng m 0    3) Khi F  P (vuông góc) F 2 F N g hd  g 2    khi đó T2
  17. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 17 F Vị trí cân bằng mới tan  0  P Chú ý: Các loại lực có thể gặp: |q q | +1) Lực tĩnh điện: F  9.109 1 22 0  r12 U +2) Lực diện trường: F=|q|.E, E  : cường độ điện trường  d F đều(V/m)    F  E khi q>0, P O   F  E khi q
  18. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 18 + Khi vật đứt ở ly độ  thì vật sẽ chuyển động ném xiên với vận tốc ban đầu là vận tốc lúc đứt dây. Vận tốc vật lúc đứt dây: v 0  2g (cos  cos 0 ) 0 Y Phương trình theo các trục toạ độ:   theo ox : x  (v 0 cos  ).t v0  N  1 2 X  theo oy : y  (v 0 sin  ).t  2 gt  O 1 g Khi đó phương trình quỹ đạo là: y  (tan  ).x  2 x2 2 (v0 .cos ) 1 g Hay: y  (tan  ).x  2 (1  tan 2  )x 2 2 v0 1 2 Chú ý: Khi vật đứt dây ở vị trí biên thì vật sẻ rơi tự do theo phương trình: y  gt 2 2) Bài toán va chạm: + Trường hợp va chạm mềm: sau khi va chạm hệ chuyển động cùng vận tốc       Theo ĐLBT động lượng: PA  PB  PAB  m A v A  m B v B  (m A  m B )V Chiếu phương trình này suy ra vận tốc sau va chạm V + Trường hợp va chạm đàn hồi: sau va chạm hai vật chuyển động với các vận tốc khác   nhau vA2 và vB2 . Theo định luật bảo toàn động lượng và động năng ta có          mA vA  mB v B  m A vA 2  mB v A2  PA  PB  PA 2  PB2     1 2 1 2 1 2 1 2  WdA  WdB =WdA2 +WdB2   2 m A vA  2 m B vB  2 m A v A2  2 mB v B2  từ đây suy ra các giá trị vận tốc sau khi va chạm vA2 và vB2 . Dạng 18 : Tổng hợp hai dao động cùng phương cùng tần số + Hai dao động điều hoà cùng phương cùng tần số: Phương trình dao động dạng: x1 = A1cos(t + 1) x2 = A2cos(t + 2)  x = x1 + x2 = Acos(t + ) a) Biên độ dao động tổng hợp: A2 = A12 + A22 + 2A1A2 cos (2 - 1) Nếu hai dao động thành phần có pha:  cùng pha:  = 2k  Amax = A1 + A2  ngược pha:  = (2k + 1)  Amin = A1  A2   vuông pha:   (2 k  1)  A  A12  A2 2 2  lệch pha bất kì: A1  A2  A  A1  A2 A sin 1  A2 sin  2 b) Pha ban đầu: tan   1   ? A1 cos  2  A2 cos  2 + Nếu có n dao động điều hoà cùng phương cùng tần số: x1 = A1cos(t + 1) ………………….. GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  19. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 19 xn = Ancos(t + n) Dao động tổng hợp là: x = x1 + x2 + x3….. = A cos(t + ) Thành phần theo phương nằm ngang Ox: Ax = A1cos1 + A2cos2 + ……. Ancosn Thành phần theo phương thẳng đứng Oy: Ay = A1sin1 + A2sin2 + ……. Ansinn A  A = Ax  Ay + …. và tan = y 2 2 Ax Chú ý: Khi không áp dụng được các công thức trên để đơn giản ta dùng phương pháp giản đồ vectơ Frexnen để giải Dạng 19 : Bài toán về sự cộng hưởng dao động Để cho hệ dao động với biên độ cực đại hoặc rung mạnh hoặc nước sóng sánh mạnh nhất thì xãy ra cộng hưởng dao động. Khi đó   0 ( f  f 0 )  T=T0 s Vận tốc khi xãy ra cộng hưởng là: v  T Lưu ý: k  con lắc lò xo: 0  m g  con lắc đơn: 0   mgd  con lắc vật lý: 0  I Dạng 20 : Bài toán về dao động tắt dần a) Tính độ giảm biên độ dao động sau một chu kỳ: A ta có : Độ giảm thế năng công lực ma sát Gọi A1 là biên độ dao động sau nửa chu kỳ đầu A2 là biên độ dao động sau nửa chu kỳ tiếp theo + Xét trong nửa chu kỳ đầu: 1 2 1 2 1 1 kA1  kA  Amasát   Fmasát ( A  A1 )  kA2  kA12  Fmasát ( A  A1 ) 2 2 2 2 1 1 F  k ( A  A1 )( A  A1 )  Fmasát ( A  A1 )  k ( A  A1 )  Fmasát  A  A1  2 masát (1) 2 2 k + Xét trong nửa chu kỳ tiếp theo: 1 2 1 2 1 1 2 kA2  kA1  Amasát   Fmasát ( A1  A2 )  kA12  kA2  Fmasát ( A2  A1 ) 2 2 2 2 1 1 F  k ( A1  A2 )( A1  A2 )  Fmasát ( A2  A1 )  k ( A1  A2 )  Fmasát  A1  A2  2 masát (2) 2 2 k F Từ (1) và (2)  Độ giảm biên độ sau một chu kỳ: A  A  A2  4 masát k Fmasát Độ giảm biên độ sau N chu kỳ dao động: An  A  An  4 N k b) Số chu kỳ dao động cho đến lúc dừng lại: GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
  20. PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ LUYỆN THI ĐẠI HỌC Trang 20 A kA Khi dừng lại An=0  số chu kỳ : N   An 4 Fmasát Lực masát: Fmasát   .N  : là hệ số masát N: phản lực vuông góc với mặt phẳng c) Để duy trì dao động: Năng lượng cung cấp = Năng lượng mất đi trong một chu kỳ= Công của lực masát PHẦN B: BÀI TẬP CHƯƠNG Bài 1.1. Câu 1: Trong một dao động điều hòa thì: A. Li độ, vận tốc gia tốc biến thiên điều hoà theo thời gian và có cùng biên độ B. Lực phục hồi ( lực kéo về) cũng là lực đàn hồi C. Vận tốc tỉ lệ thuận với thời gian D. Gia tốc luôn hướng về vị trí cân bằng và tỉ lệ với li độ Bài 1.2. Pha của dao động được dùng để xác định: A. A. Biên độ dao động B. Tần số dao động C. Trạng thái dao động D. Chu kỳ dao động Bài 1.3. Một vật dao động điều hòa, câu khẳng định nào sau đây là ĐÚNG? A. Khi vật qua vị trí cân bằng nó có vận tốc cực đại, gia tốc bằng 0. B. Khi vật qua vị trí cân bằng nó có vận tốc và gia tốc đều cực đại. C. Khi vật qua vị trí biên vận tốc cực đại, gia tốc bằng 0. D. Khi vật qua vị trí biên động năng bằng thế năng. Bài 1.4. Phương trình dao động của một vật dao động điều hòa có dạng  x  A cos(t  )cm . Gốc thời gian đã được chọn từ lúc nào? 2 A. Lúc chất điểm đi qua vị trí cân bằng theo chiều dương. B. Lúc chất điểm đi qua vị trí cân bằng theo chiều âm. C. Lúc chất điểm có li độ x = +A. D. Lúc chất điểm có li độ x = -A. Bài 1.5. Phương trình dao động của một vật dao động điều hòa có dạng  x  A cos(t  )cm . Gốc thời gian đã được chọn từ lúc nào? 4 A A. Lúc chất điểm đi qua vị trí có li độ x  theo chiều dương. 2 A 2 B. Lúc chất điểm đi qua vị trí có li độ x  theo chiều dương. 2 A 2 C. Lúc chất điểm đi qua vị trí có li độ x  theo chiều âm. 2 A D. Lúc chất điểm đi qua vị trí có li độ x  theo chiều âm. 2 Bài 1.6. Tìm phát biểu SAI: A. Động năng là một dạng năng lượng phụ thuộc vào vận tốc. B. Cơ năng của hệ luôn là một hằng số. C. Thế năng là một dạng năng lượng phụ thuộc vào vị trí. D. Cơ năng của hệ bằng tổng động năng và thế năng. Bài 1.7. Chọn câu ĐÚNG: A. Năng lượng của vật dao động điều hòa không phụ thuộc vào biên độ của hệ. B. Chuyển động của con lắc đơn luôn coi là dao động tự do. C. Dao động của con lắc lò xo là dao động điều hòa chỉ khi biên độ nhỏ. D. Trong dao động điều hòa lực hồi phục luôn hướng về VTCB và tỉ lệ với li độ. Bài 1.8. Trong dao động điều hòa, vận tốc biến đổi GV: Trần Văn Chung – ĐT: 0972.311.481 - mail:chungtin4adhsp@gmail.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0