intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

SKKN: Ứng dụng của véc tơ và tọa độ để giải một số phương trình, bất phương trình, hệ phương trình

Chia sẻ: Trần Thị Ta | Ngày: | Loại File: DOCX | Số trang:14

45
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài này đề cập đến "Ứng dụng của véc tơ và tọa độ để giải một số phương trình, bất phương trình, hệ phương trình" qua đó cho học sinh thấy được sự sáng tạo và linh hoạt trong giải toán. Từ đó học sinh sẽ thấy thích thú và say mê hơn trong học tập, do vậy sẽ đem lại kết quả cao hơn.

Chủ đề:
Lưu

Nội dung Text: SKKN: Ứng dụng của véc tơ và tọa độ để giải một số phương trình, bất phương trình, hệ phương trình

  1. MỤC LỤC Trang MỤC LỤC 1   1. Lời giới thiệu 2   2. Tên sáng kiến 2   3. Tác giả của sáng kiến 2   4. Chủ đầu tư sáng kiến 2   5. Lĩnh vực áp dụng sáng kiến 2   6. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử 3   7. Mô tả bản chất của sáng kiến 3 7.1. KIẾN THỨC CHUẨN BỊ 3 7.2.   ỨNG DỤNG VÉC TƠ VÀ TỌA  ĐỘ ĐỂ GIẢI  4 PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ  PHƯƠNG TRÌNH 7.2.1. Áp dụng vào việc giải phương trình 4 7.2.2. Áp dụng vào việc giải bất phương trình 8 7.2.3. Áp dụng vào việc giải hệ phương trình 10 8. Những thông tin cần được bảo mật  14 9. Các điều kiện cần thiết để áp dụng sáng kiến 14 10. Đánh giá lợi ích thu 14 11. Danh sách những tổ chức/cá nhân đã tham gia áp dụng thử hoặc  15 áp dụng sáng kiến lần đầu (nếu có) Kết luận và kiến nghị 16 Tài liệu tham khảo 17 BÁO CÁO KẾT QUẢ  NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN 1. Lời giới thiệu:    1
  2. Trong quá trình giải phương trình, bất phương trình hay hệ  phương trình mục tiêu  cuối cùng là tìm được nghiệm hay tập nghiệm của chúng. Để  làm được điều này  chúng ta có nhiều phương pháp làm khác nhau trong các phương pháp đó ta có thể  chia ra làm hai phương pháp chính đó là phương pháp Đại số và phương pháp Hình  học. Phương pháp Hình học được áp dụng trong một số bài toán Đại số làm cho lời   giải bài toán khá hay và ngắn gọn xúc tích. Trong chương trình hình học 10 ta được   học về các phép toán của véc tơ và một số ứng dụng của nó, trong các ứng dụng đó  phải kể đến "Ứng dụng của véc tơ và tọa độ để giải một số phương trình, bất   phương trình, hệ phương trình " Trong các kì thi đặc biệt là kì thi tốt nghiệp THPTQG ta thường thấy xuất hiện bài  toán về giải phương trình, bất phương trình và hệ phương trình…mà những bài toán  này thường có độ  khó nhất định vì sự  đa dạng của chúng, để  giải quyết chúng ta   phải sử dụng nhiều kiến thức khác nhau trong đó  2. Tên sáng kiến:  "Ứng dụng của véc tơ  và tọa độ  để  giải một số  phương trình, bất phương  trình, hệ phương trình " 3. Tác giả của sáng kiến: Họ và tên: Nguyễn Thị Thu Địa chỉ : Trường THPT Yên Lạc 2 – Yên Lạc – Vĩnh Phúc Điện thoại: 0989865992. Email: thutoanylvp@gmail.com 4. Chủ đầu tư sáng kiến: Là tác giả của sáng kiến 5. Lĩnh vực áp dụng sáng kiến: Thực hiện đề tài này tôi muốn lấy đây làm phần tài liệu phục vụ trực tiếp cho quá   trình giảng dạy của bản thân, đồng thời có thể làm tài liệu tham khảo cho các bạn   đồng nghiệp, cho các em học sinh ôn thi học sinh giỏi, ôn thi THPTQG. Trong đề tài  này tôi đề  cập đến "Ứng dụng của véc tơ  và tọa độ  để  giải một số  phương   trình, bất phương trình, hệ  phương trình  " qua đó cho học sinh thấy được sự  2
  3. sáng tạo và linh hoạt trong giải toán. Từ đó học sinh sẽ thấy thích thú và say mê hơn   trong học tập, do vậy sẽ đem lại kết quả cao hơn. 6. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử: 10/9/2019  7. Mô tả bản chất của sáng kiến: 7.1. KIẾN THỨC CHUẨN BỊ: 7.1.1. Định nghĩa tích vô hướng: Cho hai véc tơ . Khi đó tích vô hướng của  và  là một số xác định bởi công thức      7.1.2. Biểu thức tọa độ các phép toán véc tơ: Trong mặt phẳng với hệ tọa độ cho . Khi đó  +)  +)  +)  7.1.3. Biểu thức tọa độ của tích vô hướng: Trong mặt phẳng với hệ tọa độ cho . Khi đó   7.1.4. Độ dài của véc tơ: Cho . Khi đó   7.1.5. Điều kiện hai véc tơ cùng phương :  Véc tơ  cùng phương với véc tơ khi tồn tại số  sao cho   Véc tơ  cùng hướng với véc tơ khi tồn tại số  sao cho   Véc tơ  ngược hướng với véc tơ khi tồn tại số  sao cho   Chú ý: Nếu   Véc tơ  cùng hướng với véc tơ    Véc tơ  ngược hướng với véc tơ   7.1.6. Một số kết quả thường dùng: Cho hai véc tơ  bất kì. Khi đó ta có một số kết quả sau:  +) (1). Dấu bằng xảy ra khi cùng hướng. +)  . Dấu bằng xảy ra khi  ngược hướng.     3
  4. +) . Dấu bằng xảy ra khi  cùng phương. +)  . Dấu bằng xảy ra khi cùng hướng.   +) . Dấu bằng xảy ra khi ngược hướng .  +) (4) . Dấu bằng xảy ra khi cùng hướng .   7.2. ỨNG DỤNG VÉC TƠ VÀ TỌA  ĐỘ ĐỂ GIẢI PHƯƠNG TRÌNH, BẤT  PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH 7.2.1. Áp dụng vào việc giải phương trình: Ví dụ 1. Giải phương trình:  Phân tích: Vế trái của phương trình được viết lại: . Do đó ta nghĩ đến biểu thức  tọa độ của tích vô hướng trong mặt phẳng tọa đô oxy Lời giải: ĐKXĐ:  Đặt ,   Khi đó phương trình đã cho có dạng: . Điều này xảy ra khi  cùng hướng hay  Vậy phương trình đã cho có hai nghiệm   Ví dụ 2. Giải phương trình:  Phân tích: Vế trái của phương trình được viết lại: . Do đó ta nghĩ đến công thức  tính độ dài của véc tơ  trong mặt phẳng tọa đô oxy Lời giải: Đặt ,  ,  Khi đó phương trình đã cho có dạng: . Điều này xảy ra khi  cùng hướng hay Vậy phương trình đã cho có nghiệm   Ví dụ 3. Giải phương trình:  Phân tích: Phương trình được viết lại: . Do đó ta nghĩ đến công thức tính độ dài  của véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt ,  4
  5. Khi đó phương trình đã cho có dạng: . Điều này xảy ra khi  cùng hướng hay   Vậy phương trình đã cho có nghiệm   Ví dụ 4. Giải phương trình:  Phân tích: Phương trình được viết lại:   Do đó ta nghĩ đến công thức tính độ dài    của véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt ,  Ta luôn có : Điều này xảy ra khi  cùng hướng tức tồn tại số sao cho      Vậy phương trình đã cho có nghiệm  Ví dụ 5. Giải phương trình:  Phân tích: Phương trình được viết lại: . Do đó ta nghĩ đến công thức tính độ dài  của véc tơ  trong mặt phẳng tọa đô oxy Lời giải: Đặt ,  Ta có:  (3).  Điều này xảy ra khi  cùng hướng hoặc một trong hai véc tơ đó là véctơ­không Do đó (3) tương đương với hai khả năng sau: +)  +)  Kết hợp hai trường hợp trên ta được nghiệm của phương trình đã cho là:  Ví dụ 6. Giải phương trình:  Phân tích: Phương trình được viết lại: . Do đó ta nghĩ đến công thức tích vô hướng  của hai véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt ,  Khi đó phương trình đã cho có dạng: . Điều này xảy ra khi  cùng hướng hay     5
  6. Vậy phương trình đã cho có nghiệm  Ví dụ 7. Tìm m để phương trình sau có nghiệm:  Phân tích: Phương trình được viết lại: . Do đó ta nghĩ đến công thức tính độ dài  của véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt ,  Khi đó ta có:  . Dấu bằng xảy ra xảy ra khi hoặc  hoặc  cùng hướng mà      Nếu  ngược hướng thì  hệ không có nghiệm  x. Suy ra  Vậy phương trình đã cho có nghiệm   7.2.2. Áp dụng vào việc giải bất phương trình: Ví dụ 8. Giải bất phương trình:  Phân tích: Vế trái bất phương trình được viết lại: . Do đó ta nghĩ đến công thức  tính độ dài của véc tơ  trong mặt phẳng tọa đô oxy Lời giải: Đặt ,  và  Khi đó phương trình đã cho có dạng: . Điều này luôn đúng với mọi , . Vậy bất phương trình đã cho nghiệm đúng với mọi  Ví dụ 9. Giải bất phương trình:  Phân tích: Vế trái bất phương trình được viết lại: . Do đó ta nghĩ đến công thức  tính độ dài của véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt ,  và  Khi đó bất phương trình đã cho có dạng: . Điều này xảy với mọi ,  .    Vậy bất phương trình đã cho nghiệm đúng với mọi  Ví dụ 10. Giải bất phương trình:  Phân tích: Vế trái bất phương trình được viết lại: . Do đó ta nghĩ đến công thức  tính độ dài của véc tơ  trong mặt phẳng tọa đô Oxy Lời giải: Đặt , ,  6
  7. Khi đó bất phương trình đã cho có dạng:  măt khác   từ hai điều trên suy ra  hay ,      ngược hướng .  Ta thấy là một nghiệm của bất phương trình. Với thì ,  ngược hướng khi    Vậy bất phương trình đã cho nghiệm đúng với mọi  Ví dụ 11. Giải bất phương trình: (1) Phân tích: Vế trái bất phương trình được viết lại: . Do đó ta nghĩ đến công thức  tính tích vô hướng của hai véc tơ trong mặt phẳng tọa đô oxy Lời giải:  ĐKXĐ:  Đặt ,  và  Theo bất dẳng thức : . Ta có (2) Từ (1) và (2) suy ra bất phương trình (1) có nghiệm khi và chỉ khi  . Điều này xảy ra  khi  cùng hướng hay   Vậy bất phương trình đã cho có nghiệm  7.2.3. Áp dụng vào việc giải hệ phương trình:  Ví dụ 12: Giải hệ phương trình:  Phân tích: Vế trái phương trình (1) được viết lại:  . Còn vế trái của (2) được viết    lại . Do đó ta nghĩ đến công thức tính độ dài của véc tơ và công thức tích vô hướng  của hai véc tơ trong mặt phẳng tọa đô oxy Lời giải:  Đặt     và  Mặt khác :        7
  8. Vậy ta được :                               dấu bằng xảy ra khi và chỉ khi ,  cùng phương hay tồn tại     để : Vậy hệ phương trình đã cho có nghiệm  Ví dụ 13: Giải hệ phương trình:  Phân tích: Từ phương trình (1)ta nghĩ đến công thức tính độ dài của véc tơ trong  mặt phẳng tọa đô Oxy Lời giải:  Đặt     và  Mặt khác ta luôn có:                               Do đó từ hệ trên ta suy ra khi ,  cùng hướng hay   Vậy hệ phương trình đã cho có nghiệm  Ví dụ 14: Giải hệ phương trình:  Lời giải:  Đặt   Từ (2) và (3) ta suy ra  Nếu thay vào (1) ta được   Nếu từ hệ (*) ta được thay vào hệ đã cho ta suy ra hệ vô nghiệm. Vậy hệ phương trình đã cho có nghiệm   Ví dụ 15     :  Giải hệ phương trình: (ĐH khối A năm 2014) Phân tích: Vế trái phương trình (1) được viết lại:  . Do đó ta nghĩ đến công thức    tính tích vô hướng của hai véc tơ trong mặt phẳng tọa đô oxy Lời giải: ĐKXĐ:  Đặt  Khi đó : 8
  9.   Thay vào phương trình (2) ta được:    Suy ra thỏa mãn điều kiện Vậy hệ phương trình đã cho có nghiệm   Ví dụ 16     :  Giải hệ phương trình:  Lời giải:  Đặt   Ta được hệ    Nếu  thay vào hệ đã cho ta được      Nếu từ hệ (*) ta được  thay vào hệ đã cho ta suy ra hoặc .   Nếu  thay vào hệ đã cho ta được     Vậy hệ phương trình đã cho có nghiệm  BÀI TẬP TỰ LUYỆN: 1) Giải các phương trình sau a. b. c. d. e. f. g.   9
  10. 2) Giải các bất phương trình sau a. b. c. 3) Giải các hệ phương trình sau      . 8. Những thông tin cần được bảo mật (nếu có): Không 9. Các điều kiện cần thiết để áp dụng sáng kiến: Cần có hê thông sach giao khoa, tai liêu tham khao phong phu, .... ̣ ́ ́ ́ ̀ ̣ ̉ ́  Nắm vững kiến thức về véc tơ và tọa độ 10. Đánh giá lợi ích thu:  Sau khi áp dụng sáng kiến này vào lớp mà tôi trực tiếp giảng dạy  ở  trường  THPT Yên Lạc 2, tôi thấy học sinh hứng thú hơn trong học tập, có kĩ năng làm bài   toán giải phương trình, bất phương trình, hệ  phương trình tốt hơn, áp dụng giải   được một số bài toán trong các tài liệu tham khảo và đặc biệt là các bài trong các đề  thi khảo sát của trường, của Sở, các bài toán trong đề  thi THPTQG, thi học sinh   giỏi.   Số  liệu thống kê kết qủa đạt được so với trước và sau khi thực hiện sáng  kiến kinh nghiệm này.  Đối với lớp áp dụng sáng kiến kinh nghiệm này vào giảng dạy là 11A5 tôi  cho làm bài kiểm tra 45 phút và kết qủa thu được như sau:  Sĩ số Giỏi Khá Trung bình Yếu­kém 45 15 20         8 2 % 33.3 44.4 17.8 4.5 10
  11. Đối với lớp không áp dụng sáng kiến kinh nghiệm này vào giảng dạy là 11A2  tôi cho làm bài kiểm tra 45 phút và kết qủa thu được như sau:  Sĩ số Giỏi Khá Trung bình Yếu­kém 44 0 10 24 10 % 0 22.7 54.6 22.7 Mặc dù việc so sánh này ở các lớp khác nhau, chất lượng học sinh khác nhau nên độ  chính xác chưa cao. Nhưng dù sao nhìn vào 2 bảng thống kê cũng phản ánh được  một phần nào đó sự  tiến bộ  của học sinh sau khi áp dụng sáng kiến kinh nghiệm  này.  11. Danh sách những tổ  chức/cá nhân đã tham gia áp dụng thử  hoặc áp dụng sáng   kiến lần đầu (nếu có): Số  Tên tổ  Địa chỉ Phạm vi/Lĩnh vực TT chức/cá nhân áp dụng sáng kiến 1 11A5 Trường THPT Yên Lạc 2 Ôn thi THPTQG, thi HSG ̣ Yên Lac, ngay ̀     thang ́  3 năm 2020. ̣ Yên Lac, ngay ̀  10 thang ́  3 năm 2020 Xác nhận của Thủ trưởng đơn vị TÁC GIẢ SÁNG KIẾN Nguyễn Thị Thu   11
  12. KẾT LUẬN VÀ KIẾN NGHỊ 1. Kết luận: Trên đây là phần trình bày nội dung sáng kiến của tôi. Qua sáng kiến này tôi   thấy các em học sinh đã biết cách giải phương trình,bất phương trình, hệ  phương  trình. Khi gặp một phương trình,bất phương trình, hệ  phương trình các em đã hình  dung được cách biến đổi, cách làm . Từ  đó học sinh có lời giải chính xác, rõ ràng,   lập luận chặt chẽ, đạt điểm tối đa. Tiến tới đạt kết quả  cao trong các kỳ  thi khảo  sát, thi THPT Quốc gia, thi học sinh giỏi.    Tuy nhiên để  tài của tôi vẫn còn hạn chế  và không tránh khỏi sai xót, rất  mong nhận được sự đóng góp của quý thầy cô, bạn đọc. 2. Kiến nghị: Hằng năm giáo viên trong nghành giáo dục làm rất nhiều đề  tài sáng kiến,   tham gia các cuộc thi hội giảng, chiến sĩ thi đua cấp cơ sở, chiến sĩ thi đua cấp tỉnh.  12
  13. Nghành có kế hoạch chọn các đề tài chất lượng đóng thành đĩa CD phát hành về các  trường để giáo viên và học sinh tham khảo. Trên đây là đề  tài sáng kiến của tôi trong năm học 2019 – 2020. Do còn hạn   chế  về  kinh nghiệm và thời gian nên đề  tài không tránh khỏi những thiếu sót, tác  giả rất mong nhận được sự đóng góp ý kiến của các đồng nghiệp và độc giả để đề  tài được hoàn thiện hơn.  Tôi xin chân thành cảm ơn! TÀI LIỆU THAM KHẢO 1. Sách giáo khoa Hình học 10­ chương trình chuẩn  2. Sách giáo khoa Hình học 10­ chương trình nâng cao 3. Sách giáo viên Hình hoc 10­ chương trình chuẩn 4. Sách giáo viên Hình hoc 10­ chương trình nâng cao 5. Sách bài tập Hình học 10­ chương trình chuẩn 6. Các tạp chí báo toán học và tuổi trẻ các năm 7. Rèn luyện kĩ năng giải các dạng bài tập hình học 10 nâng cao­ Các tác giả: Trần  Phước Chương, Đỗ Thanh Sơn, Nguyễn Vũ Thanh   13
  14. 14
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
11=>2