intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Summary of Mechanics doctoral thesis: Equivalent inclusion approximation for effective properties of compound inclusion composites

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:27

18
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Building approximation formulas using equivalentinclusion method to determine the effective values of the conductivity, the elastic modulus of compound-inclusion composite materials and applying numerical methods using finite elements (FE) calculated for some specific material models.

Chủ đề:
Lưu

Nội dung Text: Summary of Mechanics doctoral thesis: Equivalent inclusion approximation for effective properties of compound inclusion composites

  1. MINISTRY OF EDUCATION VIETNAM ACADEMY OF AND TRAINING SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY SCIENCE AND TECHNOLOGY ----------------------------------- NGUYEN THI HUONG GIANG EQUIVALENT-INCLUSION APPROXIMATION FOR EFFECTIVE PROPERTIES OF COMPOUND-INCLUSION COMPOSITES Major: Mechanics of Solid Code: 944 01 07 SUMMARY OF MECHANICS DOCTORAL THESIS HA NOI 2020
  2. The thesis has been completed at: Graduate University Science and Technology-Vietnam Academy of Science and Technology. Supervision: 1. Prof. Dr. of Sci. Pham Duc Chinh 2. Assoc. Prof. Dr. Tran Bao Viet Riviewer 1: Prof. Dr. Hoang Xuan Luong Riviewer 2: Assoc. Prof. Dr. Nguyen Trung Kien Riviewer 3: Assoc. Prof. La Duc Viet Thesis is defended at Graduate University Science and Technology Vietnam Academy of Science and Technology at................on................. Hardcopy of the thesis be found at: - Library of Graduate University Science and Technology - Vietnam national library
  3. 1 PREFACE 1. Urgency of thesis In the producing composite materials, due to the chemical reaction between the matrix phase and inclusion phase or by the coating technique of fibers to form an intermediate phase (the shell surrounding the inclusion - interface), which in the thesis is called materials with compound inclusion. Compound inclusion is understood as the inclusion and the shell surrounding its. This shell has mechanical - physical properties unlike the matrix or inclusion and affects the macroscopic properties of the material. Then, if the upper and lower bounds method is used to determine the effective values, the bounds are often far apart, with little actual value. The effective medium approximation methods analyzed using a cylindrical or multi- layered spherical model are relatively complex when used for calculation engineers. Therefore, the research direction in the thesis is determination of macro mechanical - physical properties of compound - inclusion composite materials, using equivalent inclusion method to give simple approximation formulas. They are suitable for engineers to initially assess the mechanical properties of the materials used. Numerical simulations by finite element method are also applied to test the correctness of the approximation formula. 2. Objectives of the thesis Building approximation formulas using equivalent- inclusion method to determine the effective values of the conductivity, the elastic modulus of compound-inclusion composite materials and applying numerical methods using finite elements (FE) calculated for some specific material models. 3. Contents of the thesis Determine the effective conductivity of unidirectional coated-fiber composite materials, the coating shell isotropic or anisotropic (chapter 2). Determine the effective elastic modulus of compound – spherical inclusion composite and unidirectional coated-fiber composite materials (chapter 3).
  4. 2 Applying numerical method using finite element to calculate for some periodic composite materials (chapter 4). CHAPTER 1. OVERVIEW 1.1. Classification composite material 1.1.1. Based on inclusions Composite has 2 types: particle reinforced and fiber reinforced. 1.1.2. Based on matrices Composite has 3 types: polymer matrix, metal matrix, ceramic matrix. 1.2. Conductivity Thermal conductivity c, electrical conductivity c, diffusion D, fluid permeability k, electric permittivity ϵ, magnetic permeability μ. They have the same mathematical formula and satisfies the same equilibrium equation. Therefore, in the thesis uses thermal conductivity in calculations and illustrative examples to characterize the conductivity. 1.3. Elastic modulus Young’s modulus E, shear modulus µ, bulk modulus k, Poisson’s ratio ν. 1.4. Representative Volume Element The representative volume element (RVE) must be large enough for the microstructures to represent the properties of the composite material and at the same time small enough for the size of the object to determine the macroscopic properties. Fig 1.3 . Representative volume element RVE
  5. 3 The RVE consists of n components occupying regions V V and having isotropic conductivities c , elastic modulus k ,  (α = 1,…, n). 1.5. Approximations and bounds on the effective properties of composite materials 1.5.1. Effective medium approximations 1.5.1.1. Differential approximation n  I cI  c Dc cI , c  dc 1  (1.34) dt 1   I t  1 and coupled differential equations:  dk n  dt  1   t  I k I  k Dk k I ,  I , k ,   1  I  1   d  1     D k ,  , k ,   n I I  I I   dt 1   I t  1 n 0  t  1,  I   I (1.36)  1 with conditions c0  cM , k 0  k M ,  0   M Dc , Dk , D - the dilute suspension expressions for every inclusion type α. The effective values are solutions of correspon- ding equations when t = 1. 1.5.1.2. Self-consistent approximations n  I c I  c Dc c I ,c   0 (1.38)  1 and coupled differential equations:  n   I k I  k Dk k I ,  I , k ,    0  1 (1.39)  n      D k ,  , k ,    0   I I  I I  1 1.5.1.3. Mori – Tanaka approximation
  6. 4 For two-component isotropic composites, Mori-Tanaka approximation can be given as: 1    p1  p2  p3   cMTA  cM   I  cI  cM  M 1   cI  cM   I  ,    3cM    1  1 k I  kM  1  kMTA  kM   I  k I  kM  M   Pk   I  , .   d kM  d  1   1  I  M  1   MTA  M   I   I  M  M   P   I  .   2 M  2   (1.40) 1.5.1.4. Some other approximation - Three-point correlation approximation: related to three- point correlation information about components’ microgeome- tries. - Polarization approximations: was started from the mini- mum energy principle and polarization field Hashin-Strikman. 1.5.2. Bounds on the effective propreties 1.5.2.1. Hill – Paul bounds 1.5.2.2. Hashin – Strikman bounds Hashin and Strikman have developed their own variational principle and introduced a polarization field with different medium values on different phases and made a new estimation that is better than Hill – Paul’s.  2  d  1   2  d  1  Pk  max   k eff  Pk  min  (1.45)  d   d  P  *max    eff  P  *min  (1.46) Pc   d  1 cmax   ceff  Pc   d  1 cmin  (1.47) 1.5.2.3. Pham Duc Chinh bounds
  7. 5 Derived from minimum energy principle and constructed a polarization field similar to the Hashin field, Pham found tighter estimates than Hashin bounds thanks to the three-point correlation information about the micro-structure of a composite 1.5.3. Equivalent-inclusion approximation In some studies, when calculating the effective values of compound-inclusion composite material, coated-inclusion was substituted by the equivalent homogeneous one of the same size and corresponding mechanical properties. Some works such as Hashin calculate thermo-elastic properties of fiber-reinforced composites with thin interface. Qui and Weng searched the bulk modulus of particular composite material with a thin layer of inclusion. D. C. Pham and B. V. Tran used Maxwell's appro- ximation and equivalent-inclusion model to find the conduc- tivity of compound-inclusion composites. 1.6. Numerical method One of researche methods in the homogenization of materials is the numerical method, in which classical digital has constructed approximately dynamically possible fields. Common is the numerical method using finite elements (PTHH). 1.7. Conclusion With understanding the development history of materials science for the determination of macroscopic physico- mechanical properties , author have an overview and a know- ledge base. With the selection an equivalent-inclusion appro- ximation, the author desires to have an simple analytical approach, suitable for wide application to calculation engineers and will be presented in later chapters of the thesis. CHAPTER 2. EQUIVALENT-INCLUSION APPROXIMATION FOR CONDUCTIVITY OF COMPOUND-INCLUSION COMPOSITES 2.1. Unidirectional coated-fiber composite with isotropic coating 2. 1.1. Model
  8. 6 Fig 2.1. Unidirectinal fiber composite 2.1.2. Formulas for conductivity of circle inclusion 2.1.2.1. Hashin-Shtrikman bounds (HS) 2.1.2.2. Differential approximation (VP) Effective conductivity c eff is solution of equation: 1/2  c1  c2  ceff  eff   1 (2.23) c  c2  c1 2.1.2.3. Three-point correlation approximation (TT3Đ) 1   2  c  Pc 2 (c0 )   1  eff   c0 (2.24)  c0  c1 c0  c2  c0 is the positive solution of equation: c0  Pc 2  c0  ,  - three point correlation parameters. 2.1.3. Equivalent-inclusion approximation for coated circles (a) (b) Fig 2.4. (a) - Coated circles in an infinite matrix (b) - Equivalent inclusion in an infinite matrix
  9. 7 T   ;T   ;T   are temperature fields on phases (1), (2), (3): 1 2 3  B   B  T     A1r  1  cos ; T     A2 r  2  cos ; T 3  A3r cos 1 2  r   r  Constants A, B are determined by the following conditions: - Continuous temperature between phases: T    r2 ,   T    r2 ,  ; T    r3 ,   T    r3 ,  (2.38) 1 2 2 3 - Continuous flux between phases: q   n  q    n ; q   n  q    n 1 2 2 3 (2.39) - Boundary temperature r1: T    r1 ,    .r1 cos . 1 (2.40) β – gradient temperature, β
  10. 8 3' c23  c2  , (2.64) 1 '  2 c3  c2 2c2 2 3 with 2'  ; 3'  . (2.65) 2  3 2  3 ceff in (2.62) have expression: 1 23  23   c eff  c1    1   c1 (2.66)   1  c23  c1 2c1  1 c23  c1 2c1 Applying the differential approximation scheme of (2.23) to the equivalent medium, one can get the differential equivalent- inclusion approximation for the suspension of coated circles as the solution of : 1/2  c1  c23  c eff  eff  c  c  1 (2.67) c  23 1 If additional correlation information about microgeome- try of a particular equivalent medium suspension is available, then one can apply equation (2.24) to get the correlation equivalent-inclusion approximation for our suspension of coated circles 1     3  ceff   1  2   c0 (2.68)  c1  c0 c0  c23  where c0 is solution of: 1   2  c0   1    c0 (2.69)  c1  c0 c0  c23  Generally, different coated circular inclusions may be made from different materials, or even be made from the same materials, but with different volume proportions of the inner circles and coated (fig. 2.1 c).
  11. 9  1  n  23   c eff    1   c1 (2.70)   1 c  c  2c1   1 23 For example c1  1, c2  5, c3  20 (W .m1.K 1 );2  3 and c1  20, c2  5, c3  1(W .m1.K 1 );2  3 . Effective conduc- tivity depend on volume fraction, is shown on figures 2.5, 2.6. Fig. 2.5. Fig. 2.6 c1  1, c2  5, c3  20 c1  20, c2  5, c3  1 where HSU, HSL – upper and lower bounds Hashin- Strikman, VP-CTĐ : equation results (2.67), ĐTLN: equation results (2.66) , TT-CTĐ: euqation results (2.68) with random distribution of inclusion. 2.1.4. Experiment result Fig 2.8. Transverse conductivity of abaca fiber composites Liu et al. measured the transverse conductivity of abaca fiber composite by flash diffusion technique (TN)
  12. 10 2.2. Unidirectional coated-fiber composite with anisotropic coating 2.2.1. Model cT cT c3 c3 cn cn c1 c1 (a) (b) (a) (a) (b) Fig 2.9. Unidirectional coated-fiber composite with anisotropic coating. Suppose coated-fiber with thin coating of small volume proportion Δ  1 , which itself is composed of 2m ultra-thin coatings of volume proportion Δ / 2m , and conductivities c12 and c22 alternately. Conductivity coated-fiber c23 :   Δ  c2  c3 c3  c2 1 1   c22  c3 c3  c22     Ο c23  c3  2m  m 2c12 m 2c22   Δ  2   Δ  c23  c3  2.cN   cI 2   c3    Ο Δ 2 2   (2.74) with: cT  2  1 1 2  2c1 c 2 c2  c2 , cN  1 2 22 , cI  cT cN  c12c22 . (2.75) c2  c2 When volume ratio of coating is significant, similar to the differential approximation, from (2.74) we construct: 1  cI    c  2 2 dc  (2.77) d 1   2cN with boundary condition: c  0  c3 ; c23  c 2  (2.78) In the case cN = const, cT =const, equation (2.77) can be integrated explicitly:
  13. 11 cI c23  cI  c3  cI   cI  c3  cI    ' c 3 N , 3'  3 (2.80) cI 3  2  cI  c3    c3  c    I ' c 3 N Effective conductivity c eff 1     c eff   23  1   c1 (2.81)  c23  c1 2c1  2.3. Conclusion Chapter 2 has developed approximate formulas for determining the effective conductivity coefficient of coated-fiber composite with isotropic or anisotropic coating by equivalent- inclusion approach. Research results in this chapter have been published in scientific works [2, 4, 7, 8]. CHAPTER 3. EQUIVALENT-INCLUSION APPROXIMATION FOR ELASTIC MODULUS OF COATED-INCLUSION COMPOSITES 3.1. Elastic modulus of coated spheres Fig. 3.1. (a) a three-component suspension of coated spheres ; (b) - Equivalent homogeneous-inclusion suspension 3.1.2. Bulk modulus We assume that the loading applied to domain is defined by the tensor E representing the strain state at the macroscopic scale, displacement fields of phases: B B B urI 2  AI 2 r  I22 , urI 1  AI 1r  I21 , uM  AM r  M2 (3.4) r r r Stress fields of phases:
  14. 12 BI 2 B  rrI 2  3k I 2 AI 2  4 I 2 3 ,  rrI 1  3k I 1 AI 1  4 I 1 I31 , r r (3.5) BM  rrM  3kM AM  4M 3 . r Boundary condition: When r  0 then ur  0  BI 2  0 ; 𝑟 → ∞ then  r  E0  AM  E0 . A constant E0 satisfies E = E01. The remaining A and B constants are determined by continuous conditions of displacement and stress between phases: urI 2  urI 1 , rI 2   rI 1 ; urI 1  urIM , rI 1   rM . Similar, for model on fig. 3. 1b, displacement fields of phases: B B urEI  AEI r  EI2 , uM  AM r  M2 . (3.13) r r with BEI  0, AM  E0 , a different constants are determined by continuous conditions of displacement and stress between phases r  REI  RI 1  urEI  urM , rEI   rM . (3.14) Displacement on boundary RI1 in both models are the same B urI 1  RI 1   urEI  RI 1   AI 1RI 1  I21  AEI RI 1 (3.17) RI 1 4akI 2  I 1  4akI 1 I 1  3ak I 2 k I 1  4ak I 1 I 1 R3 kEI   , a  I32 3akI 2  3akI 1  3kI 2  4I 1 RI 1 (3.19) k  k 4 k eff  kM  EI  kEI  kM  M *M , k*M  M (3.20) kEI  k*M 3 In addition, based on Hashin's two- component coated- sphere assemblage model, we proposed the formula for calculating the bulk modulus of equivalent-inclusion, as follows: 1   I' 2 I' 1  4 kEI      k*I 1 , k*I 1   I 1 (3.21)  kI 2  k*I 1 kI 1  k*I 1  3 The values of bulk modulus of equivalent-inclusion established in two methods presented by Eqs. (3.19) and (3.21) are identical.
  15. 13 3.1.2. Shear modulus Based on Eshelby dilute suspension results, shear modulus of equivalent-inclusion configuration on fig.3.1b has form:     eff  M 1   EI AEId  EI  1  (3.27)   M  The shear modulus of the coated inclusion configuration (fig. 3.1a) take also the similar form:       eff  M 1  I 1 AId1  I 1  1  I 2 AId2  I 2  1  (3.30)   M   M  Combining Eqs. (3.27) and (3.30), the equivalent-inclu- sion expression is obtained:  EI   M M  *M  C d *M  (3.32) M  *M  C M d 9 K M  8 M with *M  M 6 K M  12M 1  d  I1    Cd   I 1 AI 1   1  I 2 AId2  I 2  1  (3.33) EI   M   M  To determine the shear modulus of equivalent-inclusion in (3.32), it is necessary to determine the deviatoric components AId1 , AId2 . Consider material in pure shear state. The displacement components in spherical coordinate system have the form: ur  U r  r  sin 2  cos 2 , u  U  r  sin  cos cos 2 , u  U  r  sin  sin 2 (3.34) 6 3c 5  4 d with U r  ar  br 3  4  . , (3.41) 1  2 r 1  2 r 2 7  4 3 2c 2d U  ar  br  4  2 , U  U . (3.42-3.43) 1  2 r r Boundary conditions:
  16. 14 - When r = 0 : U r  0  cI 2  d I 2  0 . - When r → ∞ : U r  E0 r  aM  E0 , bM  0 . When r  RI 1 , r  RI 2 : 8 remaining constants will be determined from continuous conditions of displacement ur , u , u  and   stress  rr , r , r between phases. Displacement field in phase: u  z   ur er  u e  u e The average strain in phase I2 is determined by the expression: ε I 2   u z   nz dS . r  RI 2 ε I 2  A : E  AId2 E0  e1  e1  e2  e2  ,  21 4  4  5 I 2  d I 2  1  AId2   aI 2  bI 2 RI22   . (3.67)   5 1  2 I 2  5 1  2 I 2  RI32  E0 Similar, the average strain in phase I1+ I2:  21 4  4  5 I 1  d I 1  ε I 12   aI 1  bI 1RI21    e1  e1  e2  e2  ,   5 1  2 I 1  5 1  2 I 1  RI31   21 4  4  5 I 1  d I 1  1 AId12   aI 1  bI 1RI21  3  (3.69)   5 1  2 I 1  5 1  2  I 1  R I 1  E0  I 2 d Using AId1  AId2  A  AId2 I 1 I 12  (3.71)  From eqs. (3.67), (3.71) the deviatoric components AId1 , AId2 are determined. The simple Maxwell approximation-type expression of the equivalent bulk modulus KEI invites us to suggest a similar Maxwell approximation-type simplified (approximate) equi- valent shear modulus: 1  I' 1 I' 2  9 K I 1  8 I 1 SEI     *I 1 ; *I 1  I1   I 1  *I 1  I 2  *I 1  6 K I 1  12I 1 (3.72)
  17. 15 The values KEI, μSEI given in Eqs. (3.21) and (3.72) shall be used as simplified (approximate) equivalentinclusion moduli in our approach to determine the effective characteristics of media containing coated inclusions. 3.1.4. A general approximation 1  n  EI M  4 k eff      k*M ; k*M  M (3.73)   1 kEI  k*M kM  k*M  3 1  n EI M  9k M  8 M  eff      *M ; *M  M .   1  EI  *M M  *M  6kM  12M (3.74) 3.1.5. Comparison M  1 GPa, I 1  5 GPa, I 2  25 GPa, I 1  I 2  M  0.3, I 1  2I 2 . Fig 3.2. Effective bulk Fig 3.3. Effective shear modulus modulus 3.2. Effective modulus of unidirectional coated-fiber composite 3.2.1. Model Fig 3.6. Unidirectional coated-fiber composite 3.2.2. Effective transverse area modulus
  18. 16   I' 1 I' 2  K EI      I1 , (3.79)  K I 1  I 1 K I 2  I 2  where KI1, KI2 are transverse area moduli of phases I1, I2. Effective transverse area modulus : 1   EI M      M . eff K 23 (3.83)  K EI  M K M  M  3.2.3. Effective longitudinal shear modulus 1     eff   12 EI  M   M , (3.95)   EI  M 2M  12  I' 2 with 12    . (3.96) ' EI I1 1  I1  I 2   I 1 2 I 1 3.2.4. Longitudinal Young’s modulus and Poisson’s ratio 4 I' 2 I' 1  I 2  I 1  2 EEI   I' 2 EI 2   I' 1E I 1  ,  2 I' 1 1  I 2  2 I22   2 1 ' I2 I1  2 I21   2 1  I1  EI 2 EI 1 EI 1  EI        ' '   I' 2I' 1  I 2  I 1   EI 2 1  I 1  2 I21  EI 1 1  I 2  2 I22  .    I2 I2 I1 I1 '  2 '  2  EI 1I 1 1  I 2  2 I 2  EI 2I 2 1  I 1  2 I 1  EI 2 1   I 1   4 IM  EI  M  2 E1eff   I EEI  M EM  ,  2M 1  EI  2 EI 2   2 1  I M  2 M2   2 1  M  EEI EM EM 12eff  EI EI  M M   EIM  EI  M   EEI 1  M  2 M2  EM 1  EI  2 EI2   .       EM M 1  EI  2 EI  EEIEI 1  M  2 M  EEI 1  M  2 2  3.2.5. Effective transverse shear modulus
  19. 17 1   EI M  K M * M  eff     *M ; *M  ,   EI  *M M  *M  K M  2 M 23 1  I' 1 I' 2  K I1 * I1  EI      *I 1; *I 1  .   I 2  *I 1 M  *I 1  K I 1  2 I 1 3.3. Conclusion Chapter 3 has developed approximate formulas for determining the effective elastic moduli of coated-sphere composite and unidirectional coated-fiber composite by equivalent-inclusion approach. Research results in this chapter have been published in scientific works [1, 3, 5, 6]. CHAPTER 4. NUMERICAL SIMULATION USING FINITE ELEMENT FOR COATED-INCLUSION COMPOSITE 4.1. Periodic material (a) (b) (c) (c) (d) Fig 4.2. Some periodic cells, (a) simple cubic, (b) body cen- tered cubic, (c) face-centered cubic, (d) square, (e) hexagonal 4.2. The original formulas 4.2.1. Elastic modulus For this elementary cell, we have a periodic field of stress σ(x) and displacement u(x):
  20. 18 σ  x   σ  x  n1a1e1  n2 a2e2  n3a3e3  ; n1 , n2 , n3  N . (4.3) u  x  = E.x + u'  x  (4.4) where u’(x) - periodic perturbation displacement field u'  x   u'  x  n1a1e1  n2 a2e2  n3a3e3  . (4.5) The equations satisfy on the periodic cell:   σ  x   0 ; ε  x   u  uT  ; σ  x   C  x  :  E + ε'  x   1 2 σ(x)  n : anti-periodic U 4.2.2. Conductivity For this elementary cell, we have a periodic field of flux q(x): q  x   q  x  n1a1e1  n2 a2e2  (4.13) The equations satisfy on the periodic cell:   q(x)  0 ; q(x) = -c  x  T  x  ; T  x   T 0  T .x  T *  x  Where T0 – an initial temperature of composite, T *  x  - a periodic perturbation field induced by the presence of the coated circles: T *  x   T *  x  n1a1e1  n2 a2e2  (4.18) q(x)  n : anti-periodic U (4.19) 4.3. Cast3M software 4.4. Calculate for some models and comparation 4.4.1. Unidirectional coated-fiber Composite 4.4.1.1. Effective transverse conductivity for isotropic coating Fig. 4.4. (a) – hexagonal cell, (b) – square cell
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2