Chứng minh định lý Fermat
-
Nghiên cứu trình bày đôi chút về lịch sử định lý, các cách chứng minh định lý, cách chứng minh của Lagrange và chứng minh của D.Tsagir. Để hiểu rõ hơn, mời các bạn tham khảo chi tiết nội dung chính của bài viết này.
4p trollhunters 10-01-2022 17 0 Download
-
Mục đích nghiên cứu của đề tài là trình bày các chứng minh ban đầu của Định lý Fermat nhỏ và Định lý Wilson và dạng mở rộng của chúng, sau đó trình bày thêm một số chứng minh tổ hợp gần đây. Đồng thời trình bày một số ứng dụng của hai định lý trên.
59p capheviahe26 02-02-2021 52 4 Download
-
Định lý cuối cùng của fermat: phần 1 trình bày các nội dung sau: một số khái niệm cơ bản về toán học, câu chuyện của pythagore, và mô tả định lý pythagore như là tổ tiên trực tiếp của định lý cuối cùng, một số ý đồ chứng minh định lý cuối cùng của fermat trong thế kỷ 18, 19 và đầu thế kỷ 20. mời các bạn tham khảo.
232p tuongvidanh 02-01-2019 61 4 Download
-
Toán học và tuổi trẻ Số 195 (9/1993) trình bày về định lý lớn Fermat đã được chứng minh; nhìn bài toán dưới con mắt ghép nghịch đảo; kỹ thuật sử dụng nguyên lý Canto trong Toán sơ cấp; cách dạy và học Toán. Bài giảng phục vụ cho các bạn chuyên ngành Toán học.
16p physicalfunny 27-11-2015 69 6 Download
-
Định lí: Nếu là hàm liên tục trên đoạn , có đạo hàm trên khoảng và thì tồn tại sao cho . Chứng minh: Vì liên tục trên [a; b] nên theo định lí Weierstrass nhận giá trị lớn nhất M và giá trị nhỏ nhất m trên [a; b]. - Khi M = m ta có là hàm hằng trên [a; b], do đó với mọi luôn có . - Khi M m, vì nên tồn tại sao cho hoặc , theo bổ đề Fermat suy ra .
19p hoangtrunghieu2210 26-01-2013 328 51 Download
-
Nguyên văn bản viết tay của Pierre de Fermat ngày 4/3 1660, hiện lưu giữ tại Departmental Archives of Haute-Garonne, Toulouse Bên phải là phần lề giấy nổi tiếng của Fermat, nơi theo ông, không đủ viết chứng minh định lý đầy đủ vào Câu chuyện về định lý cuối cùng của Fermat là câu chuyện độc nhất vô nhị trong lịch sử toán học thế giới, khởi nguồn từ cổ đại với nhà toán học Pythagore. Bài toán cuối cùng (sau này giới toán học gọi là Định lý cuối cùng của Fermat, hay Định lý lớn Fermat) có gốc từ...
2p nkt_bibo47 19-02-2012 168 16 Download
-
Nội dung: Ánh xạ, Số nguyên tố - đồng dư thức, Số nguyên tố, Hệ g-phân. Số nguyên tố: Định lý Bezout, Các định lý cơ bản, Định lý Fermat nhỏ, Định lý Euler, Ứng dụng và bảo mật.Phát biểu định lý 1 : Ước số nhỏ nhất khác 1 của một số tự nhiên là một số nguyên tố. Chứng minh định lý 1 : Giả sử a là một số tự nhiên lớn hơn 1, p là ước số nhỏ nhất khác 1 của a ( a=p.k.l). Nếu p là số nguyên tố, bài toán coi như đã xong. Nếu p không...
27p truongkhamtan 08-01-2011 323 101 Download