intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Group algebras

Xem 1-20 trên 35 kết quả Group algebras
  • Suppose that G is a locally compact abelian group, and write M(G) for the algebra of bounded, regular, complex-valued measures under convolution. A measure µ ∈ M(G) is said to be idempotent if µ ∗ µ = µ, or alternatively if µ takes only the values 0 and 1. The Cohen-Helson-Rudin idempotent theorem states that a measure µ is idempotent if and only if the set {γ ∈ G : µ(γ) = 1} belongs to the coset ring of G, 1. Introduction Let

    pdf31p dontetvui 17-01-2013 74 9   Download

  • If G is a locally compact group, then for each derivation D from L1 (G) into L1 (G) there is a bounded measure μ ∈ M (G) with D(a) = a ∗ μ − μ ∗ a for a ∈ L1 (G) (“derivation problem” of B. E. Johnson). Introduction Let A be a Banach algebra, E an A-bimodule. A linear mapping D : A → E is called a derivation, if D(a b) = a D(b) + D(a) b for all a, b ∈ A ([D, Def. 1.8.1]). For x ∈ E, we define the inner derivation adx :...

    pdf27p dontetvui 17-01-2013 47 8   Download

  • We show that, on the level of derived categories, representations of the Lie algebra of a semisimple algebraic group over a field of finite characteristic with a given (generalized) regular central character are the same as coherent sheaves on the formal neighborhood of the corresponding (generalized) Springer fiber.

    pdf48p dontetvui 17-01-2013 35 6   Download

  • In the first three parts of this series, we considered quadratic, cubic and quartic rings (i.e., rings free of ranks 2, 3, and 4 over Z) respectively, and found that various algebraic structures involving these rings could be completely parametrized by the integer orbits of an appropriate group representation on a vector space. These orbit results are summarized in Table 1.

    pdf43p dontetvui 17-01-2013 45 6   Download

  • In a classic paper, Gerstenhaber showed that first order deformations of an associative k-algebra a are controlled by the second Hochschild cohomology group of a. More generally, any n-parameter first order deformation of a gives, due to commutativity of the cup-product on Hochschild cohomology, a graded algebra morphism Sym• (kn ) → Ext2•bimod (a, a). We prove that any extension aof the n-parameter first order deformation of a to an infinite order formal deformation provides a canonical ‘lift’ of the graded algebra morphism above to a dg-algebra morphism Sym• (kn ) → RHom• ...

    pdf17p noel_noel 17-01-2013 54 4   Download

  • Let k be a local field, and Γ ≤ GLn (k) a linear group over k. We prove that Γ contains either a relatively open solvable subgroup or a relatively dense free subgroup. This result has applications in dynamics, Riemannian foliations and profinite groups. Contents 1. Introduction 2. A generalization of a lemma of Tits 3. Contracting projective transformations 4. Irreducible representations of non-Zariski connected algebraic groups 5. Proof of Theorem 1.3 in the finitely generated case 6. Dense free subgroups with infinitely many generators 7.

    pdf49p noel_noel 17-01-2013 59 8   Download

  • In this paper we give a geometric version of the Satake isomorphism [Sat]. As such, it can be viewed as a first step in the geometric Langlands program. The connected complex reductive groups have a combinatorial classification by their root data. In the root datum the roots and the co-roots appear in a symmetric manner and so the connected reductive algebraic groups come ˇ in pairs.

    pdf50p noel_noel 17-01-2013 46 6   Download

  • D. Mumford conjectured in [33] that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra generated by certain classes κi of dimension 2i. For the purpose of calculating rational cohomology, one may replace the stable moduli space of Riemann surfaces by BΓ∞ , where Γ∞ is the group of isotopy classes of automorphisms of a smooth oriented connected surface of “large” genus. Tillmann’s theorem [44] that the plus construction makes BΓ∞ into an infinite loop space led to a stable homotopy version of Mumford’s conjecture, stronger than the original [24]. .

    pdf100p noel_noel 17-01-2013 40 7   Download

  • Annals of Mathematics By Curtis T. McMullen* .Annals of Mathematics, 165 (2007), 397–456 Dynamics of SL2(R) over moduli space in genus two By Curtis T. McMullen* Abstract This paper classifies orbit closures and invariant measures for the natural action of SL2 (R) on ΩM2 , the bundle of holomorphic 1-forms over the moduli space of Riemann surfaces of genus two. Contents 1. Introduction 2. Dynamics and Lie groups 3. Riemann surfaces and holomorphic 1-forms 4. Abelian varieties with real multiplication 5. Recognizing eigenforms 6. Algebraic sums of 1-forms 7. Connected sums of 1-forms 8.

    pdf61p noel_noel 17-01-2013 59 7   Download

  • We prove that in every finitely generated profinite group, every subgroup of finite index is open; this implies that the topology on such groups is determined by the algebraic structure. This is deduced from the main result about finite groups: let w be a ‘locally finite’ group word and d ∈ N. Then there exists f = f (w, d) such that in every d-generator finite group G, every element of the verbal subgroup w(G) is equal to a product of f w-values.

    pdf69p noel_noel 17-01-2013 48 7   Download

  • A Pierre Deligne, a l ’occasion de son 60-i`me anniversaire, ` e en t´moignage de profonde admiration e Abstract If V is a smooth projective variety defined over a local field K with fi¯ nite residue field, so that its ´tale cohomology over the algebraic closure K is e supported in codimension 1, then the mod p reduction of a projective regular model carries a rational point. As a consequence, if the Chow group of 0-cycles of V over a large algebraically closed field is trivial, then the mod p reduction of a projective regular model carries a rational...

    pdf17p noel_noel 17-01-2013 40 4   Download

  • Dedicated to the memory of Gert Kjærg˚ Pedersen ard Abstract In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the follow(n) (n) ing extension of Voiculescu’s random matrix result: Let (X1 , . . . , Xr ) be a system of r stochastically independent n × n Gaussian self-adjoint random matrices as in Voiculescu’s random matrix paper...

    pdf66p noel_noel 17-01-2013 56 6   Download

  • A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1 [p] ∼ X2 [p]; however, conversely X1 [p] ∼ X2 [p] does = = in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels which ensures this converse? Here are two known examples of such a condition: consider the case that X is ordinary, or the case that X...

    pdf17p noel_noel 17-01-2013 61 4   Download

  • We show that a tensor product of irreducible, finite dimensional representations of a simple Lie algebra over a field of characteristic zero determines the individual constituents uniquely. This is analogous to the uniqueness of prime factorisation of natural numbers. 1. Introduction 1.1. Let g be a simple Lie algebra over C. The main aim of this paper is to prove the following unique factorisation of tensor products of irreducible, finite dimensional representations of g:

    pdf23p tuanloccuoi 04-01-2013 53 6   Download

  • Two centuries ago, in his celebrated work Disquisitiones Arithmeticae of 1801, Gauss laid down the beautiful law of composition of integral binary quadratic forms which would play such a critical role in number theory in the decades to follow. Even today, two centuries later, this law of composition still remains one of the primary tools for understanding and computing with the class groups of quadratic orders. It is hence only natural to ask whether higher analogues of this composition law exist that could shed light on the structure of other algebraic number rings and fields. ...

    pdf35p tuanloccuoi 04-01-2013 54 9   Download

  • We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to Aut(A ⊗k K), where A is a finite dimensional simple algebra over k. 1. Introduction In this paper, ‘algebra’ over a field means ‘nonassociative algebra’, i.e., a vector space A over this field with multiplication given by a linear map A ⊗ A → A, a1 ⊗ a2 → a1 a2 , subject to no a priori conditions; cf. ...

    pdf26p tuanloccuoi 04-01-2013 30 5   Download

  • Let X = G/K be a homogeneous Riemannian manifold where G is the identity component of its isometry group. A C ∞ function F on X is harmonic if it is annihilated by every element of DG (X), the algebra of all G-invariant differential operators without constant term. One of the most beautiful results in the harmonic analysis of symmetric spaces is the Helgason conjecture, which states that on a Riemannian symmetric space of noncompact type, a function is harmonic if and only if it is the Poisson integral of a hyperfunction over the Furstenberg boundary G/Po where...

    pdf59p tuanloccuoi 04-01-2013 56 7   Download

  • We give infinite series of groups Γ and of compact complex surfaces of general type S with fundamental group Γ such that 1) Any surface S with the same Euler number as S, and fundamental group Γ, is diffeomorphic to S. 2) The moduli space of S consists of exactly two connected components, exchanged by complex conjugation. Whence, i) On the one hand we give simple counterexamples to the DEF = DIFF question whether deformation type and diffeomorphism type coincide for algebraic surfaces. ii) On the other hand we get examples of moduli spaces without real points. iii)...

    pdf17p tuanloccuoi 04-01-2013 57 6   Download

  • The interplay between geometry and topology on complex algebraic varieties is a classical theme that goes back to Lefschetz [L] and Zariski [Z] and is always present on the scene; see for instance the work by Libgober [Li]. In this paper we study complements of hypersurfaces, with special attention to the case of hyperplane arrangements as discussed in Orlik-Terao’s book [OT1]. Theorem 1 expresses the degree of the gradient map associated to any homogeneous polynomial h as the number of n-cells that have to be added to a generic hyperplane section D(h) ∩ H to obtain the complement in...

    pdf36p tuanloccuoi 04-01-2013 236 8   Download

  • Topological Hochschild homology and localization 2. The homotopy groups of T (A|K) 3. The de Rham-Witt complex and TR· (A|K; p) ∗ 4. Tate cohomology and the Tate spectrum 5. The Tate spectral sequence for T (A|K) 6. The pro-system TR· (A|K; p, Z/pv ) ∗ Appendix A. Truncated polynomial algebras References Introduction In this paper we establish a connection between the Quillen K-theory of certain local fields and the de Rham-Witt complex of their rings of integers with logarithmic poles at the maximal ideal.

    pdf114p tuanloccuoi 04-01-2013 63 6   Download

CHỦ ĐỀ BẠN MUỐN TÌM

ADSENSE

nocache searchPhinxDoc

 

Đồng bộ tài khoản
3=>0