Irradiated UO2 fuel
-
On this base, the mechanistic MFPR code, including physically-grounded models for the fuel porosity evolution in UO2 fuel under various irradiation and thermal regimes, is refined. These modifications complete the consistent description of the fuel porosity evolution in the MFPR code and result in a notable improvement of the code predictions.
7p christabelhuynh 30-05-2020 9 1 Download
-
In this study, we investigated the microstructure of such doped fuels as well as a reference standard UO2 by positron annihilation spectroscopy (PAS). Although this technique is particularly sensitive to lattice point defects in materials, a wider application in the UO2 research is still missing.
5p christabelhuynh 30-05-2020 6 1 Download
-
The fission gas release microscopic model of the mechanistic code MFPR is further developed for modelling of enhanced release from irradiated UO2 fuel under transient conditions of the power ramp tests, along with the microstructure evolution characterised by the formation of a new population of large intragranular bubbles with a rather wide size distribution (from 30 to 500 nm), observed in transient-tested UO2 fuel samples.
6p christabelhuynh 30-05-2020 6 0 Download