Mathematics or report
-
Suppose that G is a locally compact abelian group, and write M(G) for the algebra of bounded, regular, complex-valued measures under convolution. A measure µ ∈ M(G) is said to be idempotent if µ ∗ µ = µ, or alternatively if µ takes only the values 0 and 1. The Cohen-Helson-Rudin idempotent theorem states that a measure µ is idempotent if and only if the set {γ ∈ G : µ(γ) = 1} belongs to the coset ring of G, 1. Introduction Let
31p dontetvui 17-01-2013 73 8 Download
-
A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. 1. Introduction The classical isoperimetric inequality states that if E is a Borel set in Rn , n ≥ 2, with finite Lebesgue measure |E|, then the ball with the same volume has a lower perimeter, or, equivalently, that (1.1) 1/n nωn |E|(n−1)/n ≤ P (E) . Here P (E) denotes the distributional perimeter of E (which coincides with the classical (n − 1)-dimensional measure of ∂E when E has a smooth boundary) and ωn is the measure of the...
41p dontetvui 17-01-2013 65 8 Download
-
The existence problem is solved, and global pointwise estimates of solutions are obtained for quasilinear and Hessian equations of Lane-Emden type, including the following two model problems: −∆p u = uq + µ, Fk [−u] = uq + µ, u ≥ 0, on Rn , or on a bounded domain Ω ⊂ Rn . Here ∆p is the p-Laplacian defined by ∆p u = div ( u| u|p−2 ), and Fk [u] is the k-Hessian defined as the sum of k × k principal minors of the Hessian matrix D2 u (k = 1, 2, . . . ,...
58p dontetvui 17-01-2013 58 10 Download
-
In this paper we describe the propagation of C ∞ and Sobolev singularities for the wave equation on C ∞ manifolds with corners M equipped with a Rie2 1 mannian metric g. That is, for X = M × Rt , P = Dt − ∆M , and u ∈ Hloc (X) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WFb (u) is a union of maximally extended generalized broken bicharacteristics. This result is a C ∞ counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with...
65p dontetvui 17-01-2013 55 8 Download
-
A long-standing conjecture due to Michael Freedman asserts that the 4-dimensional topological surgery conjecture fails for non-abelian free groups, or equivalently that a family of canonical examples of links (the generalized Borromean rings) are not A − B slice. A stronger version of the conjecture, that the Borromean rings are not even weakly A − B slice, where one drops the equivariant aspect of the problem, has been the main focus in the search for an obstruction to surgery.
21p dontetvui 17-01-2013 73 7 Download
-
We introduce the notion of cotype of a metric space, and prove that for Banach spaces it coincides with the classical notion of Rademacher cotype. This yields a concrete version of Ribe’s theorem, settling a long standing open problem in the nonlinear theory of Banach spaces. We apply our results to several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse embeddings, settling in particular the problem of classifying when Lp coarsely or uniformly embeds into Lq . We also prove a nonlinear analog of the Maurey-Pisier theorem, and use it to...
53p dontetvui 17-01-2013 65 8 Download
-
In [KSb] we studied the following model for the spread of a rumor or infection: There is a “gas” of so-called A-particles, each of which performs a continuous time simple random walk on Zd , with jump rate DA . We assume that “just before the start” the number of A-particles at x, NA (x, 0−), has a mean μA Poisson distribution and that the NA (x, 0−), x ∈ Zd , are independent. In addition, there are B-particles which perform continuous time simple random walks with jump rate DB . We start with a finite number of B-particles...
67p dontetvui 17-01-2013 48 6 Download
-
We prove that for any s 0 the majority of C s linear cocycles over any hyperbolic (uniformly or not) ergodic transformation exhibit some nonzero Lyapunov exponent: this is true for an open dense subset of cocycles and, actually, vanishing Lyapunov exponents correspond to codimension-∞. This open dense subset is described in terms of a geometric condition involving the behavior of the cocycle over certain heteroclinic orbits of the transformation.
39p dontetvui 17-01-2013 42 7 Download
-
We prove that there are arbitrarily long arithmetic progressions of primes. There are three major ingredients. The first is Szemer´di’s theorem, which ase serts that any subset of the integers of positive density contains progressions of arbitrary length. The second, which is the main new ingredient of this paper, is a certain transference principle. This allows us to deduce from Szemer´di’s e theorem that any subset of a sufficiently pseudorandom set (or measure) of positive relative density contains progressions of arbitrary length. ...
68p dontetvui 17-01-2013 46 6 Download
-
We assume that the manifold with boundary, X, has a SpinC -structure with spinor bundle S Along the boundary, this structure agrees with the /. structure defined by an infinite order, integrable, almost complex structure and the metric is K¨hler. In this case the SpinC -Dirac operator . agrees with a ¯ ¯ ∂ + ∂ ∗ along the boundary. The induced CR-structure on bX is integrable and either strictly pseudoconvex or strictly pseudoconcave. We assume that E → X is a complex vector bundle, which has an infinite order, integrable, complex structure along bX, compatible with that defined...
56p noel_noel 17-01-2013 45 6 Download
-
By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables. 1. Introduction Early work of Lewis [14] and Birch [3], [4], now almost a half-century old, shows that pairs of quite general homogeneous cubic equations possess non-trivial integral solutions whenever the dimension of the corresponding intersection is suitably large (modern refinements have reduced this permissible affine dimension to 826; see [13]). ...
32p noel_noel 17-01-2013 60 6 Download
-
Let k be a local field, and Γ ≤ GLn (k) a linear group over k. We prove that Γ contains either a relatively open solvable subgroup or a relatively dense free subgroup. This result has applications in dynamics, Riemannian foliations and profinite groups. Contents 1. Introduction 2. A generalization of a lemma of Tits 3. Contracting projective transformations 4. Irreducible representations of non-Zariski connected algebraic groups 5. Proof of Theorem 1.3 in the finitely generated case 6. Dense free subgroups with infinitely many generators 7.
49p noel_noel 17-01-2013 56 8 Download
-
We obtain general results on the stability of mixing and rapid mixing (superpolynomial decay of correlations) for hyperbolic flows. Amongst C r Axiom A flows, r ≥ 2, we show that there is a C 2 -open, C r -dense set of flows for which each nontrivial hyperbolic basic set is rapid mixing. This is the first general result on the stability of rapid mixing (or even mixing) for Axiom A flows that holds in a C r , as opposed to H¨lder, topology. o
24p noel_noel 17-01-2013 53 7 Download
-
We prove the existence of dynamical delocalization for random Landau Hamiltonians near each Landau level. Since typically there is dynamical localization at the edges of each disordered-broadened Landau band, this implies the existence of at least one dynamical mobility edge at each Landau band, namely a boundary point between the localization and delocalization regimes, which we prove to converge to the corresponding Landau level as either the magnetic field goes to infinity or the disorder goes to zero. ...
31p noel_noel 17-01-2013 33 6 Download
-
Annals of Mathematics In this paper we will solve one of the central problems in dynamical systems: Theorem 1 (Density of hyperbolicity for real polynomials). Any real polynomial can be approximated by hyperbolic real polynomials of the same degree. Here we say that a real polynomial is hyperbolic or Axiom A, if the real line is the union of a repelling hyperbolic set, the basin of hyperbolic attracting periodic points and the basin of infinity.
39p noel_noel 17-01-2013 49 5 Download
-
Let M be an isoparametric hypersurface in the sphere S n with four distinct principal curvatures. M¨nzner showed that the four principal curvatures can u have at most two distinct multiplicities m1 , m2 , and Stolz showed that the pair (m1 , m2 ) must either be (2, 2), (4, 5), or be equal to the multiplicities of an isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and M¨nzner from orthogonal representations of Clifford algebras. In this paper, u we prove that if the multiplicities satisfy m2 ≥ 2m1 − 1, then the isoparametric hypersurface M must be...
77p noel_noel 17-01-2013 46 7 Download
-
We prove the topological (or combinatorial) rigidity property for real polynomials with all critical points real and nondegenerate, which completes the last step in solving the density of Axiom A conjecture in real one-dimensional dynamics. Contents 1. Introduction 1.1. Statement of results 1.2. Organization of this work 1.3. General terminologies and notation 2. Density of Axiom A follows from the Rigidity Theorem 3. Derivation of the Rigidity Theorem from the Reduced Rigidity Theorem
94p noel_noel 17-01-2013 47 8 Download
-
We prove that a typical interval exchange transformation is either weakly mixing or it is an irrational rotation. We also conclude that a typical translation flow on a typical translation surface of genus g ≥ 2 (with prescribed singularity types) is weakly mixing.
29p noel_noel 17-01-2013 50 5 Download
-
In this paper we study some properties of reducible surfaces, in particular of unions of planes. When the surface is the central fibre of an embedded flat degeneration of surfaces in a projective space, we deduce some properties of the smooth surface which is the general fibre of the degeneration from some combinatorial properties of the central fibre. In particular, we show that there are strong constraints on the invariants of a smooth surface which degenerates to configurations of planes with global normal crossings or other mild singularities. ...
62p noel_noel 17-01-2013 50 6 Download
-
For diffeomorphisms of smooth compact finite-dimensional manifolds, we consider the problem of how fast the number of periodic points with period n grows as a function of n. In many familiar cases (e.g., Anosov systems) the growth is exponential, but arbitrarily fast growth is possible; in fact, the first author has shown that arbitrarily fast growth is topologically (Baire) generic for C 2 or smoother diffeomorphisms.
83p noel_noel 17-01-2013 43 7 Download