Olympic toán toàn quốc - Việt nam 2000

Chia sẻ: Tran Vu | Ngày: | Loại File: DOC | Số trang:1

lượt xem

Olympic toán toàn quốc - Việt nam 2000

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Olympic toán toàn quốc - Việt nam 2000 sưu tầm từ internet

Chủ đề:

Nội dung Text: Olympic toán toàn quốc - Việt nam 2000

  1. Toán học, Olympic toán toàn quốc - Việt nam 2000 Bài từ Tủ sách Khoa học VLOS. A1. Define a sequence of positive reals x0, x1, x2, ... by x0 = b, xn+1 = ? - ? + xn)). "(c "(c Find all values of c such that for all b in the interval (0, c), such a sequence exists and converges to a finite limit as n tends to infinity. A2. C and C' are circles centers O and O' respectively. X and X' are points on C and C' respectively such that the lines OX and O'X' intersect. M and M' are variable points on C and C' respectively, such that "XOM = "X'O'M' (both measured clockwise). Find the locus of the midpoint of MM'. Let OM and O'M' meet at Q. Show that the circumcircle of QMM' passes through a fixed point. A3. Let p(x) = x3 + 153x2 - 111x + 38. Show that p(n) is divisible by 32000 for at least nine positive integers n less than 32000. For how many such n is it divisible? B1. Given an angle ±?such that 0 < ±?< À? show that there is a unique real monic , quadratic x2 + ax + b which is a factor of pn(x) = sin ±?xn - sin(n±? x + sin(n±? ) for ) -±? all n > 2. Show that there is no linear polynomial x + c which divides pn(x) for all n > 2. B2. Find all n > 3 such that we can find n points in space, no three collinear and no four on the same circle, such that the circles through any three points all have the same radius. B3. p(x) is a polynomial with real coefficients such that p(x2 - 1) = p(x) p(-x). What is the largest number of real roots that p(x) can have?
Đồng bộ tài khoản