intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

[Điện Tử] Hệ Thống Đếm Cơ Số, Đại Số Boole phần 7

Chia sẻ: Dqwdqweferg Vgergerghegh | Ngày: | Loại File: PDF | Số trang:18

56
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đại số Boole có nhiều ứng dụng trong kỹ thuật điện và khoa học máy tính, cũng như trong logic toán học.

Chủ đề:
Lưu

Nội dung Text: [Điện Tử] Hệ Thống Đếm Cơ Số, Đại Số Boole phần 7

  1. Baìi giaíng Kyî Thuáût Säú Trang 94 Så âäö logic: hçnh 4.12. A B x1 x2 y0 y1 y2 y3 Hçnh 4.12 Så âäö logic maûch giaíi maî tæì 2 sang 4 Biãøu diãùn bàòng cäøng logic duìng Diode. y0 y1 +Ec y2 y3 A B B A Hçnh 4.13. Maûch giaíi maî hoïa tæì 2 sang 4 duìng diode Træåìng håüp choün mæïc têch cæûc åí ngoî ra laì mæïc logic 0 (mæïc logic tháúp L): hçnh 4.14. Baíng traûng thaïi mä taí hoaût âäüng cuía maûch y0 B y1 B A y0 y1 y2 y3 2→ 4 y2 0 0 0 1 1 1 A 0 1 1 0 1 1 y3 1 0 1 1 0 1 Hçnh 4.14. Mæïc têch cæûc ngoî laì mæïc logic tháúp 1 1 1 1 1 0
  2. Chæång 4. Hãû täø håüp Trang 95 Phæång trçnh logic: y 0 = B + A = B.A y1 = B + A = B.A y 2 = B + A = B.A y 3 = B + A = B.A Så âäö logic: B A x1 x2 y0 y1 y2 y3 Hçnh 4.15. Maûch giaíi maî 2 → 4 våïi ngoî ra mæïc têch cæûc tháúp 4.2.3.2. Maûch giaíi maî tháûp phán a. Giaíi maî âeìn NIXIE Âeìn NIXIE laì loaûi âeìn âiãûn tæí loaûi Katod laûnh (Katod khäng âæåüc nung noïng båíi tim âeìn), coï cáúu taûo gäöm mäüt Anod vaì 10 Katod mang hçnh caïc säú tæì 0 → 9. Så âäö khai triãùn cuía âeìn âæåüc cho trãn hçnh 4.16: Anod 0123456789 Hçnh 4.16. Så âäö khai triãøn cuía âeìn NIXIE
  3. Baìi giaíng Kyî Thuáût Säú Trang 96 Så âäö khäúi cuía maûch giaíi maî deìn NIXIE y0 D y1 C 4→ 10 B A y9 Hçnh 4.17. Så âäö khäúi maûch giaíi maî âeìn NIXIE Choün mæïc têch cæûc åí ngoî ra laì mæïc logic 1, luïc âoï baíng traûng thaïi hoaût âäüng cuía maûch nhæ sau: D C B A y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 Phæång trçnh logic: y 0 = D C BA y1 = DCBA y 2 = DCBA y 3 = DCBA y 4 = DC BA y 5 = DCBA y 6 = DCB A y 7 = DCBA y 8 = D C BA y 9 = DC BA
  4. Chæång 4. Hãû täø håüp Trang 97 Så âäö thæûc hiãûn maûch giaíi maî âeìn NIXIE âæåüc cho trãn hçnh 4.18 vaì 4.19: D C B A y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 Hçnh 4.18. Så âäö thæûc hiãûn bàòng cäøng logic VCC D D C C B B A A y0 y2 y3 y4 y5 y6 y7 y8 y9 Hçnh 4.19. Så âäö thæûc hiãûn bàòng diode
  5. Baìi giaíng Kyî Thuáût Säú Trang 98 b. Giaíi maî âeìn LED 7 âoaûn Âeìn LED 7 âoaûn, mäùi âoaûn laì 1 âeìn LED. Tuyì theo caïch näúi caïc Kathode hoàûc caïc Anode cuía caïc LED trong âeìn, maì ngæåìi ta phán thaình hai loaûi: LED 7 âoaûn loaûi Anode chung: A a f b g e c d a b c d e f g Hçnh 4.20. LED baíy âoaûn loaûi Anode chung LED 7 âoaûn loaûi Kathode chung : c e a b d f g K Hçnh 4.21. LED baíy âoaûn loaûi Kathode chung ÆÏng våïi mäùi loaûi LED khaïc nhau ta coï mäüt maûch giaíi maî riãng. Så âäö khäúi cuía maûch giaíi maî LED 7 âoaûn nhæ sau: a Giaíi maî A b LED baíy c B âoaûn d (4→7) C e f D g Hçnh 4.22. Så âäö khäúi maûch giaíi maî LED baíy âoaûn
  6. Chæång 4. Hãû täø håüp Trang 99 Xeït âeìn LED 7 âoaûn loaûi Anode chung: Âäúi våïi LED baíy âoaûn loaûi anode chung, vç caïc anode cuía caïc âoaûn led âæåüc näúi chung våïi nhau vaì âæa lãn mæïc logic 1 (5V), nãn muäún âoaûn led naìo tàõt ta näúi kathode tæång æïng lãn mæïc logic 1 (5V) vaì ngæåüc laûi muäún âoaûn led naìo saïng ta näúi kathode tæång æïng xuäúng mass (mæïc logic 0). Vê duû: Âãø hiãøn thë säú 0 ta näúi kathode cuía âeìn g lãn mæïc logic 1 âãø âeìn g tàõt, vaì näúi caïc kathode cuía âeìn a, b, c, d, e, f xuäúng mass nãn ta tháúy säú 0. Luïc âoï baíng traûng thaïi mä taí hoaût âäüng cuía maûch giaíi maî LED baíy âoaûn loaûi Anode chung nhæ sau: D B C A a b c d e f g Säú hiãøn thë 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 1 1 0 3 0 1 0 0 1 0 0 1 1 0 0 4 0 1 0 1 0 1 0 0 1 0 0 5 0 1 1 0 0 1 0 0 0 0 0 6 0 1 1 1 0 0 0 1 1 1 1 7 1 0 0 0 0 0 0 0 0 0 0 8 1 0 0 1 0 0 0 0 1 0 0 9 1 0 1 0 X X X X X X X X 1 0 1 1 X X X X X X X X 1 1 0 0 X X X X X X X X 1 1 0 1 X X X X X X X X 1 1 1 0 X X X X X X X X 1 1 1 1 X X X X X X X X Duìng baíng Karnaugh âãø täúi thiãøu hoïa maûch trãn. Phæång trçnh täúi thiãøu hoïa coï thãø viãút åí daûng chênh tàõc 1 (täøng cuía caïc têch säú) hoàûc daûng chênh tàõc 2 (têch cuía caïc täøng säú):
  7. Baìi giaíng Kyî Thuáût Säú Trang 100 Phæång trçnh logic cuía ngoî ra a: Daûng chênh tàõc 2: a DC a = B.D.(C + A )(C + A) = BCDA + BDCA 00 01 11 10 BA 00 0 1 x 0 Daûng chênh tàõc 1: 01 1 0 x 0 a = CBA + DCBA 11 0 0 x x 10 0 0 x x Læu yï: Trãn baíng Karnaugh chuïng ta âaî thæûc hiãûn täúi thiãøu hoïa theo daûng chênh tàõc 2. Phæång trçnh logic cuía ngoî ra b: b DC Daûng chênh tàõc 2: BA 00 01 11 10 b = .C(A + B)(A + B) = C(AB + AB) 00 0 0 x 0 = C(A ⊕ B) 01 0 1 x 0 11 0 0 x x Daûng chênh tàõc 1: 10 0 1 x x b = CBA + CBA = C(A ⊕ B) Phæång trçnh logic cuía ngoî ra c: c DC Daûng chênh tàõc 2: BA 00 01 11 10 00 0 0 x 0 c = BA C 01 0 0 x 0 Daûng chênh tàõc 1: 11 0 0 x x c = DCBA 10 1 0 x x Phæång trçnh logic cuía ngoî ra d: d DC Daûng chênh tàõc 2: 00 01 11 10 BA d = D( A + B + C)(B + C + D)(A + B)(A + C) 00 0 1 x 0 = A BCD + ABCD + A BCD 01 1 0 x 0 11 0 1 x x Daûng chênh tàõc 1: 10 0 0 x x d = CBA + DCBA + CBA
  8. Chæång 4. Hãû täø håüp Trang 101 Phæång trçnh logic cuía ngoî ra e: e DC Daûng chênh tàõc 2: 00 01 11 10 BA e = .(B + A)(C + A) 00 0 1 x 0 01 1 1 x 1 Daûng chênh tàõc 1: 11 1 1 x x e = CB + A 10 0 0 x x Phæång trçnh logic cuía ngoî ra f: Daûng chênh tàõc 2: f f = (A + B)(B + C)(A + B + C)D DC 00 01 11 10 BA = ABD + A CD + BCD 00 0 0 x 0 01 1 0 x 0 Daûng chênh tàõc 1: 11 1 1 x x f = BA + DCA + DCB 10 1 0 x x Phæång trçnh logic cuía ngoî ra g: g DC Daûng chênh tàõc 2: BA 00 01 11 10 g = D(A + B)(C + B)(B + C) 00 1 0 x 0 01 1 0 x 0 = BCD + DCBA 11 0 1 x x Daûng chênh tàõc 1: 10 0 0 x x g = DCBA + DCB Xeït maûch giaíi maî âeìn led 7 âoaûn loaûi Kathode chung: Choün mæïc têch cæûc åí ngoî ra laì mæïc logic 1. Vç Kathode cuía caïc âoaûn led âæåüc näúi chung vaì âæåüc näúi xuäúng mæïc logic 0 (0V-mass) nãn muäún âoaûn led naìo tàõt ta âæa Anode tæång æïng xuäúng mæïc logic 0 (0V-mass). Vê duû: Âãø hiãøn thë säú 0 ta näúi Anode cuía âoaûn led g xuäúng mæïc logic 0 âãø âoaûn g tàõt, âäöng thåìi caïc kathode cuía âoaûn a, b, c, d, e, f âæåüc näúi lãn nguäön nãn caïc âoaûn naìy seî saïng do âoï ta tháúy säú 0. Luïc âoï baíng traûng thaïi mä taí hoaût âäüng cuía maûch nhæ sau:
  9. Baìi giaíng Kyî Thuáût Säú Trang 102 D B C A a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 X X X X X X X 1 0 1 1 X X X X X X X 1 1 0 0 X X X X X X X 1 1 0 1 X X X X X X X 1 1 1 0 X X X X X X X 1 1 1 1 X X X X X X X Tæång tæû nhæ træåìng håüp trãn, ta cuîng duìng baíng Karnaugh âãø täúi thiãøu hoïa haìm maûch vaì âi tçm phæång trçnh logic täúi giaín caïc ngoî ra cuía caïc âoaûn led: (Læu yï trong nhæîng så âäö Karnaugh sau ta thæûc hiãûn täúi thiãøu hoïa theo chênh tàõc 1) Phæång trçnh logic cuía ngoî ra a: a DC Daûng chênh tàõc 1: BA 00 01 11 10 a = D + B + A C + AC 00 1 0 x 1 01 0 1 x 1 Daûng chênh tàõc 2: 11 1 1 x x a = ( A + B + C + D)(A + B + C) 10 1 1 x x = AD + B + AC + A C
  10. Chæång 4. Hãû täø håüp Trang 103 Phæång trçnh logic cuía ngoî ra b: b DC Daûng chênh tàõc 1: BA 00 01 11 10 b = C + BA + B A = C + A ⊕ B 00 1 1 x 1 01 1 0 x 1 Daûng chênh tàõc 2: 11 1 1 x x b = ( C +B + A )( C + B +A) 10 1 0 x x = C + AB + A B = C + A ⊕ B Phæång trçnh logic cuía ngoî ra c: c DC Daûng chênh tàõc 1: BA 00 01 11 10 c =B + A + C 00 1 1 x 1 01 1 1 x 1 Daûng chênh tàõc 2: 11 1 1 x x c=C+ B +A 10 0 1 x x Phæång trçnh logic cuía ngoî ra d: d DC Daûng chênh tàõc 1: BA 00 01 11 10 d = D+B A + C A +B C + A BC 00 1 0 x 1 01 0 1 x 1 Daûng chênh tàõc 2: 11 1 0 x x d = (A + B + C)(A + B + C)(A + B + C + D) 10 1 1 x x = (C + A B + AB)(A + B + C + D) = (C + A ⊕ B)(A + B + C + D) Phæång trçnh logic cuía ngoî ra e: e DC Daûng chênh tàõc 1: BA 00 01 11 10 e = A .B + C A 00 1 0 x 1 01 0 0 x 0 Daûng chênh tàõc 2: 11 0 0 x x e = A ( C + B) = A C + A .B 10 1 1 x x
  11. Baìi giaíng Kyî Thuáût Säú Trang 104 Phæång trçnh logic cuía ngoî ra f: f DC Daûng chênh tàõc 1: 00 01 11 10 BA f = D+ C B + B A + C A 00 1 1 x 1 01 0 1 x 1 Daûng chênh tàõc 2: 11 0 0 x x f = ( B + A )( D+C+ A )(C+ B ) 10 0 1 x x = D +BC +AC + A B Phæång trçnh logic cuía ngoî ra g: g DC BA Daûng chênh tàõc 1: 00 01 11 10 00 0 1 x 1 g =D+C B +B A +B C 01 0 1 x 1 DaÛng chênh tàõc 2: 11 1 0 x x g =( C + B + A )(B+C+D) 10 1 1 x x 4.3. MAÛCH CHOÜN KÃNH - PHÁN ÂÆÅÌNG 4.3.1. Âaûi cæång Maûch choün kãnh coìn goüi laì maûch håüp kãnh (gheïp kãnh) laì maûch coï chæïc nàng choün láön læåüt 1 trong N kãnh vaìo âãø âæa âãún ngoî ra duy nháút (ngoî ra duy nháút âoï goüi laì âæåìng truyãön chung). Do âoï, maûch choün kãnh coìn goüi laì maûch chuyãøn dæî liãûu song song åí ngoî vaìo thaình dæî liãûu näúi tiãúp åí ngoî ra, âæåüc goüi laì Multiplex (viãút tàõt laì MUX). Maûch choün kãnh thæûc hiãûn chæïc nàng åí âáöu phaït coìn maûch phán âæåìng thæûc hiãûn chæïc nàng åí âáöu thu. Maûch phán âæåìng coìn goüi laì maûch taïch kãnh (phán kãnh, giaíi âa håüp), maûch naìy coï nhiãûm vuû taïch N nguäön dæî liãu khaïc nhau åí cuìng mäüt âáöu vaìo âãø reî ra N ngoî ra khaïc û nhau. Do âoï, maûch phán âæåìng coìn goüi laì maûch chuyãùn dæî liãûu näúi tiãúp åí ngoî vaìo thaình dæî liãûu song song åí ngoî ra, âæåüc goüi laì Demultiplex (viãút tàõt laì DEMUX).
  12. Chæång 4. Hãû täø håüp Trang 105 4.3.2. Maûch choün kãnh Xeït maûch choün kãnh âån giaín coï 4 ngoî x1 x2 vaìo vaì 1 ngoî ra nhæ hçnh 4.23a. y 4→1 x3 Trong âoï: x4 + x1, x2, x4 : Caïc kãnh dæî liãûu vaìo. c1 c2 + Ngoî ra y : Âæåìng truyãön chung. Hçnh 4.23a. Maûch choün kãnh + c1, c2 : Caïc ngoî vaìo âiãöu khiãøn Váûy maûch naìy giäúng nhæ 1 chuyãøn maûch: x1 x2 y x3 x4 Hçnh 4.23b. Maûch choün kãnh Âãø thay âäøi láön læåüt tæì x1→ x4 phaíi coï âiãöu khiãøn do âoï âäúi våïi maûch choün kãnh âãø choün láön læåüt tæì 1 trong 4 kãnh vaìo cáön coï caïc ngoî vaìo âiãöu khiãøn c1, c2. Nãúu coï N kãnh vaìo thç cáön coï n ngoî vaìo âiãöu khiãøn thoía maîn quan hãû: N=2n. Noïi caïch khaïc: Säú täø håüp ngoî vaìo âiãöu khiãøn bàòng säú læåüng caïc kãnh vaìo. Viãûc choün dæî liãûu tæì 1 trong 4 ngoî vaìo âãø âæa âãún âæåìng truyãön chung laì tuìy thuäüc vaìo täø håüp tên hiãûu âiãöu khiãøn taïc âäüng âãún hai ngoî vaìo âiãöu khiãøn c1, c2. ⇒ y = x1 (x1 âæåüc näúi tåïi ngoî ra y). + c1 = c2 = 0 + c1 = 0, c2 = 1 ⇒ y = x2 (x2 âæåüc näúi tåïi ngoî ra y). + c1 = 1, c2 = 0 ⇒ y = x3 (x3 âæåüc näúi tåïi ngoî ra y). + c1 = 1, c2 = 1 ⇒ y = x4 (x4 âæåüc näúi tåïi ngoî ra y). Váûy tên hiãûu âiãöu khiãøn phaíi liãn tuûc âãø dæî c1 c2 y liãûu tæì caïc kãnh âæåüc liãn tuûc âæa âãún ngoî ra. Tæì 0 0 x1 âoï ta láûp âæåüc baíng traûng thaïi mä taí hoaût âäüng c2 0 1 cuía maûch choün kãnh. 1 c3 0 1 1 c4
  13. Baìi giaíng Kyî Thuáût Säú Trang 106 Phæång trçnh logic mä taí hoaût âäüng cuía maûch : y = c1 c 2 .x1 + c1 c2.x2 + c1 c 2 .x3 + c1.c2.x4 Så âäö logic cuía maûch: c1 c2 x1 x1 1 x2 x2 2 y x3 x3 3 x4 x4 4 Hçnh 4.24. Så âäö logic maûch choün kãnh tæì 4→1 Giaíi thêch hoaût âäüng cuía maûch: + c1 = c2 = 0 ⇒ c1 = c 2 = 1 ⇒ cäøng AND 1 coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, cuîng tæång æïng våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND 1 måí cho dæî liãûu x1 âæa vaìo. + c1 = 0, c2 = 1 ⇒ c1 = 1, c2 = 0 ⇒ cäøng AND 2 coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, cuîng tæång æïng våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND 2 måí cho dæî liãûu x2 âæa vaìo. + c1 =1, c2 = 0 ⇒ c1 = 1, c 2 = 1 ⇒ cäøng AND 3 coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, cuîng tæång æïng våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND 3 måí cho dæî liãûu x3 âæa vaìo. + c1=1, c2 =1 ⇒ c1= c2 =1 ⇒ cäøng AND 4 coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, cuîng tæång æïng våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND 4 måí cho dæî liãûu x4 âæa vaìo.
  14. Chæång 4. Hãû täø håüp Trang 107 Báy giåì, xeït maûch choün kãnh coï 4 ngoî vaìo vaì 1 ngoî ra, nhæng laûi coï 4 ngoî âiãöu khiãøn. Luïc naìy, ta khäng dæûa vaìo täø håüp tên hiãûu taïc âäüng lãn ngoî vaìo âiãöu khiãøn, maì chè xeït âãún mæïc têch cæûc åí ngoî vaìo âiãöu khiãøn. Ta seî choün mäüt trong hai mæïc logic 1 hoàûc mæïc logic 0 laìm mæïc têch cæûc, nãúu 1 ngoî vaìo trong säú 4 ngoî vaìo âiãöu khiãøn täön taûi mæïc logic têch cæûc (mæïc 1 hoàûc mæïc 0) thç kãnh dæî liãûu vaìo coï cuìng chè säú våïi ngoî vaìo âiãöu khiãøn âoï seî âæåüc kãút näúi våïi ngoî ra. Trãn hçnh 4.25 biãøu diãùn maûch choün kãnh våïi säú læåüng ngoî vaìo âiãöu khiãøn bàòng säú læåüng kãnh vaìo. x1 x2 y 4→1 x3 x4 c1 c2 c3 c4 Hçnh 4.25. Maûch choün kãnh våïi säú læåüng ngoî vaìo âiãöu khiãøn bàòng säú kãnh vaìo Nãúu choün mæïc têch cæûc cuía caïc ngoî vaìo âiãöu khiãøn laì mæïc logic 1, ta coï baíng traûng thaïi mä taí hoaût âäüng cuía maûch nhæ sau: c1 c2 c3 c4 y 0 0 0 1 x1 0 0 0 1 x2 0 0 0 1 x3 0 0 0 1 x4 Phæång trçnh logic: y = c1. x1 + c2. x2 + c3. x3 + c4. x4 YÏ nghéa trong thæûc tãú cuía maûch: + c1, c2, c3, c4 : Coï thãø hiãøu laì caïc âëa chè (nguäön vaì âêch). + x1, x2, x3, x4 : Thäng tin cáön truyãön âi.
  15. Baìi giaíng Kyî Thuáût Säú Trang 108 4.3.3. Maûch phán âæåìng Xeït maûch phán âæåìng âån giaín coï 1 ngoî vaìo vaì 4 ngoî ra kyï hiãûu nhæ sau : y1 y1 y2 x 1→4 y2 x y3 y3 y4 y4 c1 c2 Hçnh 4.26. Maûch phán âæåìng âån giaín tæì 1 → 4 Trong âoï: + x laì kãnh dæî liãûu vaìo. + y1, y2, y3, y4 caïc ngoî ra dæî liãûu. + c1, c2 caïc ngoî vaìo âiãöu khiãøn. Ta coï thãø tháúy maûch naìy thæûc hiãûn chæïc nàng nhæ 1 chuyãøn maûch (hçnh veî 4.26). Tuìy thuäüc vaìo täø håüp tên hiãûu âiãöu khiãøn taïc duûng vaìo maûch maì láön læåüt tên hiãûu tæì ngoî vaìo x seî chuyãùn âãún ngoî ra y1, y2, y3, y4 mäüt caïch tæång æïng. Luïc âoï baíng traûng thaïi mä taí hoaût âäüng cuía maûch : c1 c2 y1 y2 y3 y4 0 0 0 0 0 x 0 1 0 0 0 x 1 0 0 0 0 x 1 1 0 0 0 x Phæång trçnh logic caïc ngoî ra: y1 = c1 c 2 .x y2 = c1 c2.x y3 = c1 c 2 .x y4 = c1 c2.x Så âäö logic âæåüc cho trãn hçnh 4.27:
  16. Chæång 4. Hãû täø håüp Trang 109 c1 c2 y1 1 y2 2 x y3 3 y4 4 Hçnh 4.27. Så âäö logic thæûc hiãûn maûch phán âæåìng Giaíi thêch hoaût âäüng: + c1 = c2 = 0 → c1 = c 2 = 1 nãn cäøng AND (1) coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, tæång âæång våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND (1) måí âæa dæî liãûu tæì ngoî vaìo x âãún ngoî ra y1. Âäöng thåìi luïc âoï caïc cäøng AND 2, 3, 4 coï êt nháút mäüt ngoî vaìo âiãöu khiãøn åí mæïc logic 0 nãn khäng cho dæî liãûu tæì âáöu vaìo x âãún caïc ngoî ra. + c1 = 0, c2 = 1 → c1 = 1, c2 = 1 nãn cäøng AND (2) coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, tæång âæång våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND (2) måí âæa dæî liãûu tæì ngoî vaìo x âãún ngoî ra y2. + c1 = 1, c2 = 0 → c1 = 1, c 2 = 1 nãn cäøng AND (3) coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, tæång âæång våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND (3) måí âæa dæî liãûu tæì ngoî vaìo x âãún ngoî ra y3. + c1 = c2 = 1 → c1= c2 = 1 nãn cäøng AND (4) coï hai ngoî vaìo âiãöu khiãøn åí mæïc logic 1, tæång âæång våïi 1 ngoî vaìo âiãöu khiãøn åí mæïc logic 1 nãn cäøng AND (4) måí âæa dæî liãûu tæì ngoî vaìo x âãún ngoî ra y4. Nãúu x = 1 vaì hoaïn âäøi ngoî vaìo âiãöu khiãøn thaình ngoî vaìo dæî liãûu thç maûch phán âæåìng chuyãøn thaình maûch giaíi maî nhë phán. Vç váûy, nhaì
  17. Baìi giaíng Kyî Thuáût Säú Trang 110 saín xuáút âaî chãú taûo IC âaím baío caí hai chæïc nàng: giaíi maî vaì giaíi âa håüp (Decode/Demultilex). Vê duû: caïc IC 74138, 74139, 74154: giaíi maî vaì phán âæåìng tuìy thuäüc vaìo caïch näúi chán. Trong træåìng håüp täøng quaït, maûch phán âæåìng coï 1 ngoî vaìo vaì 2n ngoî ra: âãø taïch N=2n nguäön dæî liãûu khaïc nhau cáön coï n ngoî vaìo âiãöu khiãøn, luïc âoï säú täø håüp ngoî vaìo âiãöu khiãøn bàòng säú læåüng ngoî ra. Tuy nhiãn trong thæûc tãú, ta coìn gàûp maûch phán âæåìng coï säú læåüng ngoî vaìo âiãöu khiãøn bàòng säú ngoî ra (hçnh 4.28). Luïc âoï chè xeït âãún mæïc têch cæûc åí ngoî vaìo âiãöu khiãøn, ngæåìi ta choün mäüt trong hai mæïc logic 1 hoàûc mæïc logic 0 laìm mæïc têch cæûc. Giaí sæí choün mæïc logic 1 laì mæïc têch cæûc: nãúu 1 ngoî vaìo trong säú 4 ngoî vaìo âiãöu khiãøn täön taûi mæïc logic 1 (mæïc têch cæûc), thç ngoî ra dæî liãûu tæång æïng coï cuìng chè säú våïi ngoî vaìo âiãöu khiãøn âoï seî âæåüc näúi våïi ngoî vaìo dæî liãûu chung x. y1 Vê duû: y2 x c1 = 1 → x = y1 1→4 y3 y4 c2 = 1 → x = y2 c3 = 1 → x = y3 c4 c3 c2 c1 c4 = 1 → x = y4 Hçnh 4.28 Luïc âoï baíng traûng thaïi hoaût âäüng cuía maûch: c1 c2 c3 c4 y1 y2 y3 y4 1 0 0 0 X 0 0 0 0 1 0 0 0 X 0 0 0 0 1 0 0 0 X 0 0 0 0 1 0 0 0 X Phæång trçnh logic vaì så âäö logic âæåüc cho trãn hçnh 4.29: y1 = c1 x y2 = c2 x y 3 = c3 x y4 = c4 x
  18. Chæång 4. Hãû täø håüp Trang 111 Giaíi thêch hoaût âäüng cuía maûch: + Khi c1=1, c2= c3= c4 = 0 chè coï cäøng AND(1) thäng cho dæî liãûu tæì x näúi âãún âáöu ra y1. + Khi c2=1, c1= c3 = c4 = 0 chè coï cäøng AND(2) thäng cho dæî liãûu tæì x näúi âãún âáöu ra y2. + Khi c3=1, c2 = c1= c4 = 0 chè coï cäøng AND(3) thäng cho dæî liãûu tæì x näúi âãún âáöu ra y3. + Khi c4= 1, c2= c3 = c1= 0 chè coï cäøng AND(4) thäng cho dæî liãûu tæì x näúi âãún âáöu ra y4. Vç maûch choün kãnh âæåüc thæûc hiãûn åí âáöu phaït vaì maûch phán âæåìng âæåüc thæûc hiãûn åí âáöu thu nãn âãø âaím baío dæî liãûu âæåüc chuyãøn âuïng kãnh thç maûch choün kãnh vaì maûch phán âæåìng phaíi âäöng bäü våïi nhau. c3 c1 c2 c4 y1 1 y2 2 x y3 3 y4 4 Hçnh 4.29. Maûch phán âæåìng våïi säú ngoî vaìo âiãöu khiãøn bàòng säú ngoî ra 4.4. MAÛCH SO SAÏNH 4.4.1. Âaûi cæång - Maûch so saïnh duìng âãø so saïnh caïc säú nhë phán vãö màût âäü låïn. Vê duû: So saïnh a vaì b: a = 0, b = 1 ⇒ a< b. - Coï hai maûch so saïnh: + So saïnh hai säú nhë phán 1 bit. + So saïnh hai säú nhë phán nhiãöu bit.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2