20 đề thi thử tốt nghiệp môn toán năm 2010-2011
lượt xem 219
download
Tổng hợp 20 đề thi thử tốt nghiệp trung học phổ thông môn Toán năm 2010-2011 - Tài liệu tham khảo cho các bạn học sinh ôn tập và rèn luyện kỹ năng làm bài thi tốt nghiệp cũng như giúp giáo viên định hướng phương pháp giảng dạy hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: 20 đề thi thử tốt nghiệp môn toán năm 2010-2011
- WWW.VNMATH.COM 20 ĐỀ THI THỬ TỐT NGHIỆP MÔN TOÁN NĂM HỌC 2010 – 2011 ĐÁP ÁN CHI TIẾT WWW.VNMATH.COM
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG WWW.VNMATH.COM ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 01 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = (1 - x )2 (4 - x ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm m để phương trình sau đây có 3 nghiệm phân biệt: x 3 - 6x 2 + 9x - 4 + m = 0 Câu II (3,0 điểm): 1) Giải phương trình: 22x +1 - 3.2x - 2 = 0 1 I = ò (1 + x )e x dx 2) Tính tích phân: 0 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = e x (x 2 - x - 1) trên đoạn [0;2]. Câu III (1,0 điểm): Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa cạnh bên và mặt đáy bằng 60 0. Tính thể tích của hình chóp. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điêm): Trong không gian với hệ toạ độ Oxyz, cho A (2; 0; - 1), B (1; - 2; 3), C (0;1;2) . ̉ 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Tìm toạ độ hình chiếu vuông góc của gốc toạ độ O lên mặt phẳng (A BC ) . Câu Va (1,0 điêm): Tìm số phức liên hợp của số phức z biết rằng: z + 2z = 6 + 2i . ̉ 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho A (2; 0; - 1), B (1; - 2; 3), C (0;1;2) 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Viết phương trình mặt cầu tâm B, tiếp xúc với đường thẳng AC. Câu Vb (1,0 điểm): Tính môđun của số phức z = ( 3 - i )2011 . ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... 2
- BÀI GIẢI CHI TIẾT. Câu I : y = (1 - x )2 (4 - x ) = (1 - 2x + x 2 )(4 - x ) = 4 - x - 8x + 2x 2 + 4x 2 - x 3 = - x 3 + 6x 2 - 9x + 4 y = - x 3 + 6x 2 - 9x + 4 Tập xác định: D = ¡ Đạo hàm: y ¢ = - 3x 2 + 12x - 9 é =1 x y ¢ = 0 Û - 3x 2 + 12x - 9 = 0 Û ê Cho ê =3 x ê ë ; Giới hạn: lim y = +¥ lim y = - ¥ x ®- ¥ x ® +¥ Bảng biến thiên –∞ +∞ x 1 3 – 0 + 0 – y¢ +∞ 4 y –∞ 0 Hàm số ĐB trên khoảng (1;3), NB trên các khoảng (–∞ (3;+∞ ;1), ) Hàm số đạt cực đại y CÑ = 4 tại x CÑ = 3 ; y đạt cực tiểu y CT = 0 tại x CT = 1 y ¢ = - 6x + 12 = 0 Û x = 2 Þ y = 2 . Điểm uốn là I(2;2) ¢ é =1 4 x Giao điểm với trục hoành: y = 0 Û - x + 6x - 9x + 4 = 0 Û ê 3 2 ê =4 x ê ë 2 Giao điểm với trục tung: x = 0 Þ y = 4 Bảng giá trị: x 0 1 2 3 4 y 4 0 2 4 0 34 12 O x Đồ thị hàm số: nhận điểm I làm trục đối xứng như hình vẽ bên đây (C ) : y = - x 3 + 6x 2 - 9x + 4 . Viết pttt tại giao điểm của (C ) với trục hoành. Giao điểm của (C ) với trục hoành: A (1; 0), B (4; 0) pttt với (C ) tại A (1; 0) : O x 0 = 1 vaø 0 = 0 üï y ï Þ pttt taï A : y - 0 = 0(x - 1) Û y = 0 i ¢ x 0 ) = f ¢ = 0ý ï Of( (1) ï þ pttt với (C ) tại B (4; 0) : O x 0 = 4 vaø 0 = 0 ü ï y ï Þ pttt taï B : y - 0 = - 9(x - 4) Û y = - 9x + 36 i ý O f ¢ x 0 ) = f ¢ = - 9ï ( (4) ï þ Vậy, hai tiếp tuyến cần tìm là: y = 0 và y = - 9x + 36 3 2 3 2 Ta có, x - 6x + 9x - 4 + m = 0 Û - x + 6x - 9x + 4 = m (*) (*) là phương trình hoành độ giao điểm của (C ) : y = - x 3 + 6x 2 - 9x + 4 và d : y = m nên số nghiệm phương trình (*) bằng số giao điểm của (C ) và d. Dựa vào đồ thị ta thấy (*) có 3 nghiệm phân biệt khi và chỉ khi 0
- 22x +1 - 3.2x - 2 = 0 Û 2.22x - 3.2x - 2 = 0 (*) Đặt t = 2x (ĐK: t > 0), phương trình (*) trở thành é = 2 (nhan) t 2t 2 - 3t - 2 = 0 Û êê = - 1 (loai) t ê ë 2 x Với t = 2: 2 = 2 Û x = 1 Vậy, phương trình (*) có nghiệm duy nhất x = 1. 1 I = ò (1 + x )e dx x 0 ìu =1+x ì du = dx ï ï ï ï Þí Đặ t í . Thay vào công thức tích phân từng phần ta được: x ï v = ex ï dv = e dx ï ï ï ï î î 1 1 1 I = (1 + x )e x 0 - e x dx = (1 + 1)e 1 - (1 + 0)e 0 - e x = 2e - 1 - (e 1 - e 0 ) = e ò0 0 1 x Vậy, I = ò(1 + x )e dx = e 0 Hàm số y = e x (x 2 - x - 1) liên tục trên đoạn [0;2] y ¢ = (e x )¢(x 2 - x - 1) + e x (x 2 - x - 1)¢ = e x (x 2 - x - 1) + e x (2x - 1) = e x (x 2 + x - 2) é = 1 Î [0;2] (nhan) x Cho y ¢ = 0 Û e (x + x - 2) = 0 Û x + x - 2 = 0 Û ê x 2 2 ê = - 2 Ï [0;2] (loai) x ê ë Ta có, f (1) = e 1(12 - 1 - 1) = - e f (0) = e 0 (02 - 0 - 1) = - 1 f (2) = e 2 (22 - 2 - 1) = e 2 Trong các kết quả trên, số nhỏ nhất là - e và số lớn nhất là e 2 2 Vậy, min y = - e khi x = 1; max y = e khi x = 2 [0;2] [0;2] S Câu III Gọi O là tâm của mặt đáy thì SO ^ (A BCD ) do đó SO là đường cao của hình chóp và hình chiếu của SB lên mặt đáy là BO, · do đó SBO = 600 (là góc giữa SB và mặt đáy) A · · · D SO BD Þ SO = BO . t an SBO = Ta có, t an SBO = . t an SBO 60 BO 2 O = a 2. t an 600 = a 6 B C 2a Vậy, thể tích hình chóp cần tìm là 4a 3 6 1 1 1 V= B .h = A B .B C .SO = 2a .2a.a 6 = 3 3 3 3 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: Với A (2; 0; - 1), B (1; - 2; 3), C (0;1;2) . uuu r uuu r Ta có hai véctơ: A B = (- 1; - 2; 4) , A C = (- 2;1; 3) æ 2 4 4 - 1 - 1 - 2ö uuu uuu r r r ç- ÷ [A B , A C ] = ç ÷= (- 10; - 5; - 5) ¹Þ 0 ; ; A, B ,C không thẳng hàng. ÷ ç 1 3 3 -2 -2 ÷ ç 1ø ç ÷ è Điểm trên mp (A BC ) : A (2; 0; - 1) 4
- uuu uuu r r r vtpt của mp (A BC ) : n = [A B , A C ] = (- 10; - 5; - 5) Vậy, PTTQ của mp (A BC ) : A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0 Û - 10(x - 2) - 5(y - 0) - 5(z + 1) = 0 Û - 10x - 5y - 5z + 15 = 0 Û 2x + y + z - 3 = 0 r Gọi d là đường thẳng qua O và vuông góc với mặt phẳng (a) , có vtcp u = (2;1;1) ì x = 2t ï ï ï d : ï y = t . Thay vào phương trình mp (a) ta được: í PTTS của ï ïz =t ï ï î 1 2(2t ) + (t ) + (t ) - 3 = 0 Û 6t - 3 = 0 Û t = 2 Vậy, toạ độ hình chiếu cần tìm là H ( 1; 2 ; 1 ) 1 2 Câu Va: Đặt z = a + bi Þ z = a - bi , thay vào phương trình ta được a + bi + 2(a - bi ) = 6 + 2i Û a + bi + 2a - 2bi = 6 + 2i Û 3a - bi = 6 + 2i ì ì ï 3a = 6 ïa = 2 Ûï Ûï Þ z = 2 - 2i Þ z = 2 + 2i í í ï- b = 2 ïb = - 2 ï ï î î Vậy, z = 2 + 2i THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: Với A (2; 0; - 1), B (1; - 2; 3), C (0;1;2) . Bài giải hoàn toàn giống bài giải câu IVa (phần của ban cơ bản): đề nghị xem lại phần trên uuur r Đường thẳng AC đi qua điểm A (2; 0; - 1) , có vtcp u = A C = (- 2;1; 3) uuu r Ta có, A B = (- 1; - 2; 4) æ 2 4 4 - 1 - 1 - 2ö uuu r r r uuur ç- ÷ u = A C = (- 2;1; 3) . Suy ra [A B , u ] = ç 1 3 ; 3 - 2 ; - 2 ÷= (- 10; - 5; - 5) ÷ ç ÷ ç 1ø ç ÷ è Áp dụng công thức khoảng cách từ điểm B đến đường thẳng AC ta được uuu r r (- 10)2 + (- 5)2 + (- 5)2 [A B , u ] 15 d (B , A C ) = = = r u (- 2)2 + (1)2 + (32 ) 14 15 Mặt cầu cần tìm có tâm là điểm B (1; - 2; 3) , bán kính R = d (B , A C ) = nên có pt 14 225 (x - 1)2 + (y + 2)2 + (z - 3)2 = 14 Câu Vb: Ta có, ( 3 - i )3 = ( 3) 3 - 3.( 3)2 .i + 3. 3.i 2 - i 3 = 3 3 - 9i - 3 3 + i = - 2 3.i 670 Do đó, ( 3 - i )2010 = é 3 - i )3 ù = (- 23 i )670 = 22010.i 670 = 22010.(i 4 )167 .i 2 = - 22010 ( ê ú ë û Vậy, z = ( 3 - i )2011 = - 22010.( 3 - i ) Þ z = 22010. ( 3)2 + 12 = 2011 WWW.VNMATH.COM 5
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG WWW.VNMATH.COM ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 0 2 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = x 3 - 3x 2 + 3x 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C ) biết tiếp tuyến song song với đường thẳng có phương trình y = 3x . Câu II (3,0 điểm): 1) Giải phương trình: 6.4x - 5.6x - 6.9x = 0 p I = ò (1 + cos x )xdx 2) Tính tích phân: 0 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = e x (x 2 - 3) trên đoạn [–2;2]. Câu III (1,0 điểm): Hình chóp S.ABC có đáy ABC là tam giác vuông cân (BA = BC), cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a 3 , cạnh bên SB tạo với đáy một góc 60 0. Tính diện tích toàn phần của hình chóp. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho điểm A (2;1;1) và hai đường thẳng x - 1 y +2 z +1 x - 2 y - 2 z +1 , d ¢: d: = = = = 1 -3 2 2 -3 -2 1) Viết phương trình mặt phẳng (a) đi qua điểm A đồng thời vuông góc với đường thẳng d 2) Viết phương trình của đường thẳng D đi qua điểm A, vuông góc với đường thẳng d đồng thời cắt đường thẳng d ¢ Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: (z )4 - 2(z )2 - 8 = 0 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian Oxyz cho mp(P) và mặt cầu (S) lần lượt có phương trình (P ) : x - 2y + 2z + 1 = 0 và (S ) : x 2 + y 2 + z 2 4x + 6y + 6z + 17 = 0 1) Chứng minh mặt cầu cắt mặt phẳng. 2) Tìm tọa độ tâm và bán kính đường tròn giao tuyến của mặt cầu và mặt phẳng. 1 Câu Vb (1,0 điểm): Viết số phức sau dưới dạng lượng giác z = 2 + 2i ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. 6
- BÀI GIẢI CHI TIẾT. Câu I : y = x 3 - 3x 2 + 3x Tập xác định: D = ¡ Đạo hàm: y ¢ = 3x 2 - 6x + 3 Cho y ¢ = 0 Û 3x 2 - 6x + 3 = 0 Û x = 1 ; Giới hạn: lim y = - ¥ lim y = +¥ x ®- ¥ x ® +¥ Bảng biến thiên –∞ +∞ x 1 + 0 + y¢ y y –∞ +∞ 1 Hàm số ĐB trên cả tập xác định; hàm số không đạt cực trị. y ¢ = 6x - 6 = 0 Û x = 1 Þ y = 1 . Điểm uốn là I(1;1) ¢ 2 Giao điểm với trục hoành: I 1 Cho y = 0 Û x 3 - 3x 2 + 3x = 0 Û x = 0 Giao điểm với trục tung: Cho x = 0 Þ y = 0 1 2 x O Bảng giá trị: x 0 1 2 y 0 1 2 Đồ thị hàm số (như hình vẽ bên đây): (C ) : y = x 3 - 3x 2 + 3x . Viết của (C ) song song với đường thẳng D : y = 3x . Tiếp tuyến song song với D : y = 3x nên có hệ số góc k = f ¢ x 0 ) = 3 ( é =0 x0 Do đó: 3x 0 - 6x 0 + 3 = 3 Û 3x 0 - 6x 0 = 0 Û ê 2 2 ê =2 x ê0 ë 3 2 Với x 0 = 0 thì y 0 = 0 - 3.0 + 3.0 = 0 và f ¢ x 0 ) = 3 nên pttt là: y - 0 = 3(x - 0) Û y = 3x (loại vì trùng với D ) ( 3 2 Với x 0 = 2 thì y 0 = 2 - 3.2 + 3.2 = 2 và f ¢ x 0 ) = 3 nên pttt là: y - 2 = 3(x - 2) Û y = 3x - 4 ( Vậy, có một tiếp tuyến thoả mãn đề bài là: y = 3x - 4 Câu II 6.4x - 5.6x - 6.9x = 0 . Chia 2 vế pt cho 9x ta được æö x2 x æö 4x 6x ç2 ÷ - 5. ç2 ÷ - 6 = 0 (*) 6. x - 5. x - 6 = 0 Û 6. ç ÷ ç÷ ç3 ø ç3 ø è÷ è÷ 9 9 x æö Đặt t = ç2 ÷ (ĐK: t > 0), phương trình (*) trở thành ç÷ ç3 ø è÷ 3 2 6t 2 - 5t - 6 = 0 Û t = (nhan) , t = - (loai) 2 3 x x -1 3 æö æö æö Với t = : ç2 ÷ = 3 Û ç2 ÷ = ç2 ÷ Û x = - 1 ç÷ ç÷ ç÷ 2 ç3 ø ç÷ ç÷ è÷ 2 è3 ø è3 ø Vậy, phương trình đã cho có nghiệm duy nhất x = - 1 . 7
- p p p I = ò (1 + cos x )xdx = ò xdx + ò x cos xdx 0 0 0 p p x2 p2 02 p2 ò xdx = Với I 1 = = - = 2 2 2 2 0 0 p Với I 2 = ò x cos xdx 0 ìu = x ì du = dx ï ï ï Þï Đặ t í í . Thay vào công thức tích phân từng phần ta được: ï dv = cos xdx ï v = sin x ï ï î î p p p p ò0 = cos p - cos 0 = - 2 I 2 = x sin x sin xdx = 0 - (- cos x ) 0 = cos x - 0 0 p2 Vậy, I = I 1 + I 2 = -2 2 Hàm số y = e x (x 2 - 3) liên tục trên đoạn [–2;2] y ¢ = (e x )¢(x 2 - 3) + e x (x 2 - 3)¢ = e x (x 2 - 3) + e x (2x ) = e x (x 2 + 2x - 3) é = 1 Î [- 2;2] (nhan) x y ¢ = 0 Û e x (x 2 + 2x - 3) = 0 Û x 2 + 2x - 3 = 0 Û ê Cho ê = - 3 Ï [- 2;2] (loai) x ê ë Ta có, f (1) = e 1(12 - 3) = - 2e f (- 2) = e - 2 [(- 2)2 - 3] = e - 2 f (2) = e 2 (22 - 3) = e 2 Trong các kết quả trên, số nhỏ nhất là - 2e và số lớn nhất là e 2 2 Vậy, [min y = - 2e khi x = 1; max y = e khi x = 2 - 2;2] [- 2;2] Câu III Theo giả thiết, S A ^ A B , SA ^ A C , BC ^ A B , BC ^ SA Suy ra, BC ^ (SA B ) và như vậy BC ^ SB S Do đó, tứ diện S.ABC có 4 mặt đều là các tam giác vuông. · Ta có, AB là hình chiếu của SB lên (ABC) nên SBA = 600 a3 · SA SA a3 Þ AB = t an SBA = = a (= BC ) = · AB 3 t an SBO C A 2 2 2 2 A C = A B + BC = a + a = a 2 60 2 2 2 2 SB = SA + A B = (a 3) + a = 2a B Vậy, diện tích toàn phần của tứ diện S.ABC là: ST P = S D SA B + S D SBC + S DSA C + S DA BC 1 = (SA .A B + SB .BC + SA .A C + A B .BC ) 2 1 3+ 3 + 6 2 = (a 3.a + 2a.a + a 3.a 2 + a.a ) = a × 2 2 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: Điểm trên mp (a) : A (2;1;1) 8
- r r vtpt của (a) là vtcp của d: n = ud = (1; - 3;2) d Vậy, PTTQ của mp (a) : A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0 d' Û 1(x - 2) - 3(y - 1) + 2(z - 1) = 0 A Û x - 2 - 3y + 3 + 2z - 2 = 0 B α Û x - 3y + 2z - 1 = 0 ì x = 2 + 2t ï ï ï ¢ : ï y = 2 - 3t . Thay vào phương trình mp (a) ta được: PTTS của d í ï ï z = - 1 - 2t ï ï î (2 + 2t ) - 3(2 - 3t ) + 2(- 1 - 2t ) - 1 = 0 Û 7t - 7 = 0 Û t = 1 Giao điểm của (a) và d ¢ là B ( 4; - 1; - 3) uuur r Đường thẳng D chính là đường thẳng AB, đi qua A (2;1;1) , có vtcp u = A B = (2; - 2; - 4) ì x = 2 + 2t ï ï ï ï nên có PTTS: D : í y = 1 - 2t (t Î ¡ ) ï ï z = 1 - 4t ï ï î Câu Va: (z )4 - 2(z )2 - 8 = 0 Đặt t = (z )2 , thay vào phương trình ta được éz )2 = 4 é = ±2 é = ±2 é=4 z z t ( ê ê ê ê 2 t - 2t - 8 = 0 ÛÛÛÛ ê2 ê ê ê=- 2 t ê = ±i 2 z ê = mi 2 z êz ) = - 2 ( ê ë ë ë ë Vậy, phương trình đã cho có 4 nghiệm: I z1 = 2 ; z 2 = - 2 ; z 3 = i 2 ; z 4 = - i 2 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: Từ pt của mặt cầu (S) ta tìm được hệ số : a = 2, b = –3, c = –3 và d = 17 Do đó, mặt cầu (S) có tâm I(2;–3;–3), bán kính R = 22 + (- 3)2 + (- 3)2 - 17 = 5 2 - 2(- 3) + 2(- 3) + 1 Khoảng cách từ tâm I đến mp(P): d = d (I ,(P )) = =1
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG WWW.VNMATH.COM ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 03 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = - x 4 + 4x 2 - 3 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Dựa vào (C ) , hãy biện luận số nghiệm của phương trình: x 4 - 4x 2 + 3 + 2m = 0 3) Viết phương trình tiếp tuyến với (C ) tại điểm trên (C ) có hoành độ bằng 3. Câu II (3,0 điểm): 1) Giải phương trình: 7x + 2.71- x - 9 = 0 e2 I = ò (1 + ln x )xdx 2) Tính tích phân: e x 2 + 2x + 2 1 trên đoạn [- ;2] 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = 2 x +1 Câu III (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy, SA = 2a. Xác định tâm và tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn uur rrr r r r Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OI = 2i + 3 j - 2k và mặt phẳng (P ) có phương trình: x - 2y - 2z - 9 = 0 1) Viết phương trình mặt cầu (S ) có tâm là điểm I và tiếp xúc với mặt phẳng (P ) . 2) Viết phương trình mp (Q ) song song với mp (P ) đồng thời tiếp xúc với mặt cầu (S ) Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = x 3 - 4x 2 + 3x - 1 và y = - 2x + 1 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ trục toạ độ Oxyz, cho điểm A(–1;2;7) và đường thẳng x- 2 y- 1 z d có phương trình: = = 1 2 1 1) Hãy tìm toạ độ của hình chiếu vuông góc của điểm A trên đường thẳng d. 2) Viết phương trình mặt cầu tâm A tiếp xúc với đường thẳng d. ì log x + log y = 1 + log 9 ï ï 4 4 4 Câu Vb (1,0 điểm): Giải hệ pt í ï x + y - 20 = 0 ï î ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. 10
- BÀI GIẢI CHI TIẾT. Câu I : y = - x 4 + 4x 2 - 3 Tập xác định: D = ¡ Đạo hàm: y ¢ = - 4x 3 + 8x é =0 éx = 0 é =0 x 4 x ê ê ê y ¢ = 0 Û - 4x 3 + 8x = 0 Û 4x (- x 2 + 2) = 0 ÛÛÛ 2 Cho ê ê x +2 = 0 ê2 = 2 x ê =± 2 x - ê ê ë ë ë ; Giới hạn: lim y = - ¥ lim y = - ¥ x ®- ¥ x ® +¥ Bảng biến thiên x –∞ +∞ 0 -2 2 + 0 – 0 + 0 – y¢ 1 1 y –∞ –∞ –3 Hàm số ĐB trên các khoảng (- ¥ ; - 2),(0; 2) , NB trên các khoảng (- 2; 0),( 2; +¥ ) Hàm số đạt cực đại yCĐ = 1 tại x CÑ = ± 2 , đạt cực tiểu yCT = –3 tại x CT = 0 . é2 = 1 é = ±1 x x y = 0 Û - x 4 + 4x 2 - 3 = 0 ÛÛê 2 ê Giao điểm với trục hoành: cho ê ê ê =± 3 x ê =3 x ë ë Giao điểm với trục tung: cho x = 0 Þ y = - 3 Bảng giá trị: x - 3 - 2 0 2 3 y 0 1 –3 1 0 Đồ thị hàm số: y 1 -1 3 -3 1 O x 2 -2 -3 y = 2m 2m x 4 - 4x 2 + 3 + 2m = 0 Û - x 4 + 4x 2 - 3 = 2m (*) Số nghiệm pt(*) bằng với số giao điểm của (C ) : y = - x 4 + 4x 2 - 3 và d: y = 2m. Ta có bảng kết quả: Số giao điểm Số nghiệm M 2m của (C) và d của pt(*) m > 0,5 2m > 1 0 0 m = 0,5 2m = 1 2 2 –1,5< m < 0,5 –3< 2m < 1 4 4 m = –1,5 2m = –3 3 3 m < –1,5 2m < –3 2 2 x 0 = 3 Þ y 0 = 0 g f ¢ x 0 ) = f ¢ 3) = y ¢ = - 4x 3 + 8x = - 4 3 ( ( Vậy, pttt cần tìm là: y - 0 = - 4 3(x - 3) Û y = - 4 3x + 12 11
- 7 x 1- x x Câu II 7 + 2.7 - 9 = 0 Û 7 + 2. - 9 = 0 (*) 7x Đặ t (ĐK: t > 0), phương trình (*) trở thành t = 7x é = 2( nhan) t 14 - 9 = 0 Û t 2 + 14 - 9t = 0 Û t 2 - 9t + 14 = 0 Û ê t+ ê = 7 ( nhan) t t ê ë Với t = 2 : 7x = 2 Û x = log7 2 Với t = 7 : 7x = 7 Û x = 1 Vậy, phương trình đã cho có các nghiệm : x = 1 và x = log7 2 e2 I = ò (1 + ln x )xdx e ì ï ï du = 1 dx ì u = 1 + ln x ï ï ï ï x Þí í Đặ t . Thay vào công thức tích phân từng phần ta được: x2 ï dv = xdx ï ï ïv = î ï ï 2 ï î e2 e2 x 2 (1 + ln x ) e 4 (1 + 2) e 2 (1 + 1) x2 e2 x ò I= dx = - - - 2 2 2 2 4e e e 3e 4 e4 e2 5e 4 3e 2 - e2 - = += - 2 4 4 4 4 5e 4 3e 2 Vậy, I = - 4 4 2 x + 2x + 2 1 liên tục trên đoạn [- 2 ;2] Hàm số y = x +1 (x + 2x + 2)¢(x + 1) - (x 2 + 2x + 2)(x + 1)¢ (2x + 2)(x + 1) - (x 2 + 2x + 2)1 x 2 + 2x 2 y ¢= = = (x + 1)2 (x + 1)2 (x + 1)2 é = 0 Î [- 1 ;2] (nhan) x ê 2 2 Cho y ¢ = 0 Û x + 2x = 0 Û ê 1 x = - 2 Ï [- 2 ;2] (loai) ê ë æ 1ö 5 10 f ç- ÷= Ta có, f ( 0) = 2 f (2) = ç÷ ç 2÷ 2 èø 3 10 Trong các kết quả trên, số nhỏ nhất là 2 và số lớn nhất là 3 10 Vậy, min y = 2 khi x = 0; max y = khi x = 2 3 1 ;2] 1 ;2] [- [- 2 2 Câu III Theo giả thiết, S A ^ A C , SA ^ A D , BC ^ A B , BC ^ SA Suy ra, BC ^ (SA B ) và như vậy BC ^ SB S Hoàn toàn tương tự, ta cũng sẽ chứng minh được CD ^ SD . A,B,D cùng nhìn SC dưới 1 góc vuông nên A,B,D,S,C cùng thuộc 2a I đường tròn đường kính SC, có tâm là trung điểm I của SC. A D Ta có, SC = SA 2 + A C 2 = (2a )2 + (a 2)2 = a 6 SC a6 a Bán kính mặt cầu: R = B C = 2 2 2 æ 6ö ça ÷ Vậy, diện tích mặt cầu ngoại tiếp S.ABCD là: S = 4pR = 4p ç ÷ 2 2 ç 2 ø = 6pa ÷ ÷ è 12
- THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: uur r r r OI = 2i + 3 j - 2k Þ I (2; 3; - 2) Tâm của mặt cầu: I (2; 3; - 2) 2 - 2.3 - 2.(- 2) - 9 9 Bán kính của mặt cầu: R = d (I ,(P )) = =3 = 3 12 + (- 2)2 + (- 2)2 Vậy, pt mặt cầu (S ) là: (x - a )2 + (y - b)2 + (z - c )2 = R 2 Û (x - 2)2 + (y - 3)2 + (z + 2)2 = 9 r r (Q ) || (P ) : x - 2y - 2z - 9 = 0 nên (Q) có vtpt n = n ( P ) = (1; - 2; - 2) Do đó PTTQ của mp(Q) có dạng (Q ) : x - 2y - 2z + D = 0 (D ¹ - 9) Do (Q) tiếp xúc với mặt cầu (S) nên é = 9 (nhan) D 2 - 2.3 - 2.(- 2) + D D =3Û D =9Û ê d (I ,(Q )) = R Û =3Û ê = - 9( loai) D 3 12 + (- 2)2 + (- 2)2 ê ë Vậy, PTTQ của mp(Q) là: (Q ) : x - 2y - 2z + 9 = 0 é =1 x Câu Va: Cho x - 4x + 3x - 1 = - 2x + 1 Û x - 4x + 5x - 2 Û ê 3 2 3 2 ê =2 x ê ë 2 Diện tích cần tìm là: S = ò x 3 - 4x 2 + 5x - 2 dx 1 2 æ 4 4x 3 5x 2 ö x 1 1 (đvdt) 2 (x 3 - 4x 2 + 5x - 2)dx = ç - ÷ hay S = ò ç - 2x ÷ = - + = ÷ ç4 è ø1 3 2 12 12 1 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: uuu r Gọi H là hình chiếu của A lên d thì H (2 + t ;1 + 2t ; t ) , do đó A H = ( 3 + t ;2t - 1; t - 7) uuu r r A H ^ d nên A H .ud = 0 Û (3 + t ).1 + (2t - 1).2 + (t - 7).1 = 0 Û 6t - 6 = 0 Û t = 1 Do Vậy, toạ độ hình chiếu của A lên d là H ( 3; 3;1) Tâm của mặt cầu: A(–1;2;7) Bán kính mặt cầu: R = A H = 42 + 12 + (- 6)2 = 53 Vậy, phương trình mặt cầu là: (x + 1)2 + (y - 2)2 + (z - 7)2 = 53 Câu Vb: ĐK: x > 0 và y > 0 ì log x + log y = 1 + log 9 ì log xy = log 36 ì xy = 36 ï ï ï ï Ûï Ûï 4 4 4 4 4 í í í ï x + y - 20 = 0 ï x + y - 20 = 0 ï x + y = 20 ï ï ï î î î é = 18 > 0 X X 2 - 20X + 36 = 0 Û ê x và y là nghiệm phương trình: ê =2>0 X ê ë ì x = 18 ìx = 2 ï ï ï ;ï Vậy, hệ pt đã cho có các nghiệm: í í ïy = 2 ï y = 18 ï ï î î WWW.VNMATH.COM 13
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG WWW.VNMATH.COM ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 0 4 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1 Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4. Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log 4 (4x 2 ) - 5 = 0 2 p sin x + cos x 2) Tính tích phân: ò I= 3 dx cos x 0 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3mx 2 + (m 2 - 1)x + 2 Câu III (1,0 điểm): · Cho hình chóp S.ABC có đáy là tam giác vuông tại B, BA C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC). II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn uuur rrr r r Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng (a) , x +1 y- 6 z- 2 đồng thời vuông góc với đường thẳng D : . = = 3 -1 1 Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 0 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ các đỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD. 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. 14
- BÀI GIẢI CHI TIẾT. Câu I: 2x - 1 y= x- 1 Tập xác định: D = ¡ \ {1} -1 < 0, " x Î D Đạo hàm: y ¢ = (x - 1)2 Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị. Giới hạn và tiệm cận: lim y = 2 ; lim y = 2 Þ y = 2 là tiệm cận ngang. x ®- ¥ x ® +¥ ; lim y = +¥ Þ x = 1 là tiệm cận đứng. lim y = - ¥ x ®1- x ®1+ Bảng biến thiên x –∞ +∞ 1 – – y¢ y +∞ 2 y –∞ 2 1 Giao điểm với trục hoành: y = 0 Û 2x - 1 = 0 Û x = 2 3 Giao điểm với trục tung: cho x = 0 Þ y = 1 2,5 2 Bảng giá trị: x –1 0 1 2 3 y 3/2 1 || 3 5/2 1 Đồ thị hàm số như hình vẽ bên đây: x -1 O 12 2x - 1 3 (C ) : y = x- 1 Tiếp tuyến có hệ số góc bằng –4 nên f ¢ x 0 ) = - 4 ( é é ê - 1= 1 ê =3 x x -1 1 ê0 ê0 2 2Û 2 Û = - 4 Û (x 0 - 1) = Û ê ê ê - 1=- 1 ê =1 2 4 (x 0 - 1) x x ê0 ê0 2 2 ë ë 3- 1 2. 2 æ ö 3 = 4 .pttt là: y - 4 = - 4 çx - 3 ÷Û y = - Với x 0 = Þ y 0 = 3 4x + 10 ç ÷ ç ÷ è 2ø 2 -1 2 2. 1 - 1 æ 1ö 1 4 ç - ÷Û y = - 4x + 2 2 Với x 0 = Þ y 0 = 1 = 0 . pttt là: y - 0 = - x ç ÷ ç ÷ è 2ø 2 -1 2 Vậy, có 2 tiếp tuyến thoả mãn ycbt là : y = - 4x + 2 và y = - 4x + 10 Câu II: Điều kiện: x > 0. Khi đó, phương trình đã cho tương đương với log2 x - (log 4 4 + log 4 x 2 ) - 5 = 0 Û log2 x - log2 x - 6 = 0 (*) 2 2 Đặ t , phương trình (*) trở thành t = log2 x é = 23 é=3 é x =3 t log x ê ê ê2 t 2 - t - 6 = 0 ÛÛÛ - 2 (nhận cả hai nghiệm) ê ê=- 2 ê x =- 2 t log ê =2 x ê ê2 ë ë ë 1 Vậy, phương trình đã cho có hai nghiệm : x = 8 và x = 4 p p p p æx cos x ö sin x + cos x sin sin x 3ç ÷= I =ò ò ò dx + ò 3 1.dx dx = dx 3 3 ÷ ç + çcos x ÷ è cos x ø cos x cos x 0 0 0 0 15
- p sin x .dx , ta đặt t = cos x Þ dt = - sin x .dx Þ sin x .dx = - dt Với I 1 = ò0 3 cos x p Đổi cận: x 0 3 1 t 1 2 1 æ ö 2 ç- dt ÷= 1 dt = ln t 1 1 ò ø òt Thay vào: I 1 = = ln 1 - ln = ln 2 ç ÷ çt ÷ 1 1 è 2 1 2 2 p p p Với I 2 = ò 3 1.dx =x 3 = 0 3 0 p Vậy, I = I 1 + I 2 = ln 2 + 3 3 2 2 y = x - 3mx + (m - 1)x + 2 có TXĐ D = ¡ y ¢ = 3x 2 - 6m x + m 2 - 1 y ¢ = 6x - 6m ¢ ì 3.22 - 6m .2 + m 2 - 1 = 0 ì (2) ï ïf¢ =0 ï ï Hàm số đạt cực tiểu tại x 0 = 2 ÛÛí ¢ í ïf ¢ >0 ï 6.2 - 6m > 0 ï (2) ï î ï î ì m - 12m + 11 = 0 ì ï ï m = 1 hoac m = 11 2 Ûï ï Ûí Û m =1 í ï 12 - 6m > 0 ïm
- æ2 - 1 - 1 2 2 2ö r rr ç ÷ u = [n , u D ] = ç ÷= (1; - 5; - 8) ; ; ÷ ç- 1 ÷ ç 1 1 3 3 - 1ø ç ÷ è ì x = 1+t ï ï ï ï Vậy, PTTS của d là: í y = - 2 - 5t (t Î ¡ ) ï ï z = 3 - 8t ï ï î Câu Va: - z 2 + 2z - 5 = 0 (*) Ta có, D = 22 - 4.(- 1).(- 5) = - 16 = (4i )2 Vậy, pt (*) có 2 nghiệm phức phân biệt - 2 - 4i - 2 + 4i = 1 + 2i và z 2 = z1 = = 1 - 2i -2 -2 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: uuur uuu r Ta có, A B = ( 0;1; 0) và CD = (1;1; - 1) Gọi M,N lần lượt là điểm nằm trên AB và CD thì toạ độ của M,N có dạng M (1;1 + t ;1), N (1 + t ¢ + t ¢ - t ¢ ;1 ;2 ) uuuu r Þ MN = (- t ¢ t - t ¢ t ¢- 1) ; ; MN là đường vuông góc chung của AB và CD khi và chỉ khi uuu uuuu r r ì ï A B .MN = 0 ì t - t ¢= 0 ï ï 1 ï ï uuu uuuu r r Ûí Û t = t ¢= í ï CD .MN = 0 ï - t ¢ + t - t ¢- t ¢ + 1 = 0 2 ï ï î ï î æ 3 ö æ 3 3 ö uuuu æ 1 r 1ö r 3 Vậy, M ç ;1÷N ç ; ; ÷Þ MN = ç- ; 0; - ÷hay u = (1; 0;1) là vtcp của d cần tìm 1; ,ç ç ÷ç ç ÷ ÷ ç 2 ø è2 2 2 ø ç2 ÷ ÷ ÷ è è 2ø ì x = 1+t ï ï ï ï 3 PTCT của đường vuông góc chung cần tìm là: ï y = í (t Î ¡ ) ï 2 ï ïz = 1+t ï ï î Phương trình mặt cầu (S ) có dạng: x + y + z 2 - 2ax - 2by - 2cz + d = 0 2 2 Vì A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) thuộc (S ) nên: ì 3 - 2a - 2b - 2c + d = 0 ì 2a + 2b + 2c - d = 3 ì d = 2a + 2b + 2c - 3 ìd = 6 ï ï ï ï ï ï ï ï ï ï ï ï ï 6 - 2a - 4b - 2c + d = 0 ï 2a + 4b + 2c - d = 6 ï - 2b ïb = 3 / 2 =- 3 ï ï ï ï ï ï ï Ûï Ûí Ûí í í ï 6 - 2a - 2b - 4c + d = 0 ï 2a + 2b + 4c - d = 6 ï ïc = 3 / 2 2b - 2c = 0 ï ï ï ï ï ï ï ï ï 9 - 4a - 4b - 2c + d = 0 ï 4a + 4b + 2c - d = 9 ï - 2a - 2b + 2c = - 3 ïa = 3 / 2 ï ï ï ï ï ï ï ï î î î î 2 2 2 Vậy, phương trình mặt cầu là: x + y + z - 3x - 3y - 3z + 6 = 0 Câu Vb: Cho y = ln x = 0 Û x = 1 Diện tích cần tìm là: e e S = ò ln x dx = ò ln xdx 1 1 ì ï ï du = 1 dx ì u = ln x ï ï ï Þí Đặ t í . Thay vào công thức tính S ta được: ïv = xx ï dv = dx ï ï î ï î e e e ò dx = e ln e - 1ln 1 - x 1 = e - 0 - e + 1 = 1 (đvdt) S = x ln x 1 - 1 Vậy, diện tích cần tìm là: S = 1 (đvdt) WWW.VNMATH.COM 17
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG WWW.VNMATH.COM ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 0 5 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = x 2 (4 - x 2 ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Tìm điều kiện của tham số b để phương trình sau đây có 4 nghiệm phân biệt: x 4 - 4x 2 + log b = 0 3) Tìm toạ độ của điểm A thuộc (C ) biết tiếp tuyến tại A song song với d : y = 16x + 2011 Câu II (3,0 điểm): 1) Giải phương trình: log2 (x - 3) + log2 (x - 1) = 3 p sin x ò I= 2 dx 2) Tính tích phân: p 1 + 2 cos x 3 3) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = e x + 4e - x + 3x trên đoạn [1;2] Câu III (1,0 điểm): Cho tứ diện SABC có ba cạnh SA, SB, SC đôi một vuông góc với nhau, SB =SC = 2cm, SA = 4cm. Xác định tâm và tính bán kính của mặt cầu ngo ại tiếp tứ di ện, t ừ đó tính di ện tích c ủa mặt cầu đó. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian Oxyz , cho điểm A (- 3;2; - 3) và hai đường thẳng x- 1 y +2 z- 3 x- 3 y- 1 z- 5 và d2 : d1 : = = = = 1 1 -1 1 2 3 1) Chứng minh rằng cắt nhau. và d1 d2 2) Viết phương trình mặt phẳng (P) chứa d1 và d2 . Tính khoảng cách từ A đến mp(P). Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = x 2 + x - 1 và y = x 4 + x - 1 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng x- 1 y +2 z- 3 x y- 1 z- 6 và d2 : = d1 : = = = 1 1 -1 1 2 3 1) Chứng minh rằng và chéo nhau. d1 d2 2) Viết phương trình mp(P) chứa d1 và song song với d2 . Tính khoảng cách giữa d1 và d2 Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = 2x , x + y = 4 và trục hoành ......... Hết .......... Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. 18
- BÀI GIẢI CHI TIẾT. Câu I: y = x 2 (4 - x 2 ) = - x 4 + 4x 2 Tập xác định: D = ¡ Đạo hàm: y ¢ = - 4x 3 + 8x é =0 éx = 0 é =0 x 4 x ê ê ê y ¢ = 0 Û - 4x 3 + 8x = 0 Û 4x (- x 2 + 2) = 0 ÛÛÛ 2 Cho ê ê x +2 = 0 ê2 = 2 x ê =± 2 x - ê ê ë ë ë ; Giới hạn: lim y = - ¥ lim y = - ¥ x ®- ¥ x ® +¥ Bảng biến thiên x –∞ +∞ 0 -2 2 + 0 – 0 + 0 – y¢ 4 4 y –∞ –∞ 0 Hàm số ĐB trên các khoảng (- ¥ ; - 2),(0; 2) , NB trên các khoảng (- 2; 0),( 2; +¥ ) Hàm số đạt cực đại yCĐ = 4 tại x CÑ = ± 2 , y đạt cực tiểu yCT = 0 tại x CT = 0 . 4 Giao điểm với trục hoành: y = logm é2 = 0 é =0 x x y = 0 Û - x + 4x = 0 ÛÛê 2 ê 4 2 cho ê ê = ±2 x ê =4 x ê ë ë Giao điểm với trục tung: cho x = 0 Þ y = 0 Bảng giá trị: x - 2 - 2 0 2 2 2x -2 - 2 O 2 y 0 0 0 4 0 Đồ thị hàm số như hình vẽ bên đây: x 4 - 4x 2 + log b = 0 Û - x 4 + 4x 2 = log b (*) Số nghiệm của phương trình (*) bằng số giao điểm của (C) và d: y = logb Dựa vào đồ thị, (C) cắt d tại 4 điểm phân biệt khi và chỉ khi 0 < log b < 4 Û 1 < b < 104 Vậy, phương trình (*) có 4 nghiệm phân biệt khi và chỉ khi 1 < b < 104 Giả sử A (x 0 ; y 0 ) . Do tiếp tuyến tại A song song với d : y = 16x + 2011 nên nó có hệ số góc 3 3 f ¢ x 0 ) = 16 Û - 4x 0 + 8x 0 = 16 Û 4x 0 - 8x 0 + 16 = 0 Û x 0 = - 2 ( x0 = - 2 Þ y0 = 0 Vậy, A (- 2; 0) Câu II: log2 (x - 3) + log2 (x - 1) = 3 ì ìx > 3 ïx - 3> 0 ï ï Ûï Û x > 3 . Khi đó, Điều kiện: í í ïx - 1> 0 ïx >1 ï ï î î log2 (x - 3) + log2 (x - 1) = 3 Û log2 éx - 3)(x - 1)ù= 3 Û (x - 3)(x - 1) = 8 ( ë û é = - 1 (loai ) x Û x - x - 3x + 3 = 8 Û x - 4x - 5 = 0 Û ê 2 2 ê = 5 (nhan) x ê ë Vậy, phương trình đã cho có nghiệm duy nhất: x = 5 19
- p sin x ò I = 2 dx p 1 + 2 cos x 3 - dt Đặt t = 1 + 2 cos x Þ dt = - 2 sin x .dx Þ sin x .dx = 2 p p Đổi cận: x 3 2 t 2 1 2 æ dx ö 11 2 dt 1 1 ç- ÷ Thay vào: I = ò ò = ln t ln 2 = ln 2 ç ÷ × = = t ç2 ø ÷ è 2t 2 2 2 1 1 Vậy, I = ln 2 Hàm số y = e x + 4e - x + 3x liên tục trên đoạn [1;2] Đạo hàm: y ¢ = e x - 4e - x + 3 4 x -x x + 3 = 0 Û e 2x + 3e x - 4 = 0 (1) Cho y ¢ = 0 Û e - 4e + 3 = 0 Û e - ex Đặt t = e x (t > 0), phương trình (1) trở thành: é = 1 (nhan) t t 2 + 3t - 4 = 0 ÛÛê e x = 1 Û x = 0 Ï [1;2] (loại) ê = - 4 (loai) t ê ë 4 4 2 + 3 và f (2) = e + 2 + 6 f (1) = e + e e 4 4 + 3 , số lớn nhất là e 2 + 2 + 6 Trong 2 kết quả trên số nhỏ nhất là: e + e e 4 4 2 Vậy, min y = e + + 3 khi x = 1 và max y = e + 2 + 6 khi x = 2 e e [1;2] [1;2] A Câu III Gọi H,M lần lượt là trung điểm BC, SA và SMIH là hbh. M Ta có, IH | | SA ^ (SBC ) Þ IH ^ SH Þ SMIH là hình chữ nhật I Dễ thấy IH là trung trực của đoạn SA nên IS = IA S C H là tâm đường tròn ngoại tiếp D SBC và IH ^ (SBC ) nên H IS = IB = IC (= IA ) Þ I là tâm mặt cầu ngoại tiếp hình chóp. B 1 1 12 1 1 SB 2 + SC 2 = 2 + 22 = 2 (cm) và IH = SM = SA = (cm) Ta có, SH = B C = 2 2 2 2 2 Bán kính mặt cầu là: R = IS = SH 2 + IH 2 = ( 2)2 + 22 = 6 Diện tích mặt cầu : S = 4pR 2 = 4p( 6)2 = 24p(cm ) THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: r d1 đi qua điểm M 1(1; - 2; 3) , có vtcp u1 = (1;1; - 1) r d2 đi qua điểm M 2 (3;1;5) , có vtcp u 2 = (1;2; 3) æ - 1 - 1 1 1 1ö ç1 rr ÷ [u1, u 2 ] = ç ÷ ç2 3 ; 3 1 ; 1 2 ÷= (5; - 4;1) Ta có ÷ ç ç ÷ è ø uuuuuu r và M 1M 2 = (2; 3;2) r r uuuuur u Suy ra, [u1, u 2 ].M 1M 2 = 5.2 - 4.3 + 1.2 = 0 , do đó d1 và d2 cắt nhau. Mặt phẳng (P) chứa d1 và d2 . Điểm trên (P): M 1(1; - 2; 3) 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
20 Đề thi thử tốt nghiệp môn Toán năm 2010 - 2011 đáp án chi tiết
81 p | 954 | 311
-
Bộ 20 đề thi thử tốt nghiệp THPT năm 2022 môn GDCD (Có đáp án)
107 p | 180 | 38
-
Đề Thi Thử Tốt Nghiệp Toán 2013 - Phần 9 - Đề 20 (có đáp án)
1 p | 83 | 8
-
ĐỀ THI THỬ TỐT NGHIỆP MÔN TOÁN_ĐỀ 20
2 p | 53 | 8
-
20 đề thi thử THPT Quốc gia 2020 môn Toán (Có đáp án)
274 p | 43 | 7
-
20 đề thi thử THPT Quốc gia môn Hóa học 2020
119 p | 55 | 5
-
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 20
4 p | 48 | 4
-
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 20
7 p | 35 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Địa có đáp án - Đề số 20
9 p | 30 | 3
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Hóa - Đề số 20
8 p | 27 | 3
-
Đề thi thử tốt nghiệp trung học phổ thông môn Toán 2014 - đề 20
3 p | 69 | 3
-
Đề thi thử tốt nghiệp THPT Toán - THPT Lương Thế Vinh đề 20
5 p | 98 | 3
-
Đề thi thử tốt nghiệp THPT môn Toán của sở GDĐT - Đề 20
2 p | 65 | 3
-
Đề thi thử tốt nghiệp THPT 2013 môn Sinh học: Đề 20
5 p | 50 | 3
-
Đề thi thử tốt nghiệp THPT môn Toán - Đề số 20
1 p | 28 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 20
2 p | 41 | 2
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Hóa học có đáp án - Đề số 20
11 p | 39 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn