63 Đề thi thử Đại học 2011 - Đề số 16-20
lượt xem 31
download
Tham khảo tài liệu '63 đề thi thử đại học 2011 - đề số 16-20', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: 63 Đề thi thử Đại học 2011 - Đề số 16-20
- 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 16 Thời gian làm bài: 180 phút . (ĐỀ THAM KHẢO) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm): x Cho hàm số y (C) x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho 2. Viết phương trình tiếp tuyến với đồ thị (C) , biết rằng khoảng cách từ tâm đối xứng của (C) đến tiếp tuyến là lớn nhất. Câu II: (2 điểm): 1 1. Giải phương trình: cos3x cos2x cosx 2 x4 x4 x x 2 16 3 2. Giải bất phương trình : 2 e 2 Câu III: (1 điểm): Tính tích phân: I x ln xdx . x 1 Câu IV: (1 điểm): Cho hình chóp lục giác đều S.ABCDEF với SA = a, AB = b. Tính thể tích của hình chóp đó và khoảng cách giữa các đường thẳng SA, BE. Câu V: (1 điểm): Cho x, y là các số thực thõa mãn điều kiện: x 2 xy y 2 3. Chứng minh rằng : (4 3 3) x 2 xy 3y 2 4 3 3. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa: (2 điểm): 1.Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC với B(2; -7), phương trình đường cao AA’: 3x + y + 11 = 0 ; phương trình trung tuyến CM : x + 2y + 7 = 0 . Viết phương trình tổng quát của đường thẳng AB và AC 2.Trong không gian với hệ tọa độ Oxyz, cho (P): 3x + 2y – z + 4 = 0 và điểm A(4;0;0), B(0; 4; 0). Gọi I là trung điểm của đoạn thẳng AB. a) Tìm tọa độ giao điểm E của đường thẳng AB với mặt phẳng (P). b) Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (P) đồng thời K cách đều gốc tọa độ O và mặt phẳng (P). 3 log x 3 2 log x 2 3 Câu VIIa: (1 điểm): Giải bất phương trình: log x 3 log x 2 B.Theo chương trình Nâng cao Câu VIb: (2 điểm): 1. Viết phương trình đường thẳng (d) đi qua M(1 ; 4 ) và cắt hai tia Ox,Oy tại hai điểm A,B sao cho độ dài OA + OB đạt giá trị nhỏ nhất. 2.Trong không gian với hệ toạ độ Oxyz, cho A(-1 ; 0 ; 2) ; B( 3 ; 1 ; 0) ; C(0 ; 1 ; 1) và đường thẳng (d) là giao tuyến của hai mặt phẳng (P) : 3x –z + 5 = 0 ; (Q) : 4x + y – 2z + 1 = 0 a) Viết phương trình tham số của (d) và phương trình mặt phẳng ( ) qua A ; B; C . b) Tìm giao điểm H của (d) và ( ) . Chứng minh H là trực tâm của tam giác ABC . Câu VIIb: (1 điểm): Cho tập A= { 0; 1; 2; 3; 4; 5; 6}. Có bao nhiêu số tự nhiên có 5 chữ số khác nhau chọn trong A sao cho số đó chia hết cho 15. -----------------------------------------Hết -------------------------------------------- -16- http://www.VNMATH.com - 16 -
- 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 17 Thời gian làm bài: 180 phút . (ĐỀ THAM KHẢO) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Gọi (Cm) là đồ thị của hàm số y x3 (2m 1) x 2 m 1 (1) m là tham số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2.Tìm để đồ thị (Cm) tiếp xúc với đường thẳng y 2mx m 1 Câu II (2 điểm): 1. Tìm nghiệm x 0; của phương trình: (1 cos x) (sin x 1)(1 cos x) (1 cos x) (sin x 1)(1 cos x) sin x 2 2 x 2 2 x y2 3 y 5 2. Giải hệ phương trình: . 2 x 2 x y2 3 y 2 Câu III (1 điểm): 4 sin 4x Tính tích phân I dx . cos x. tan 4 x 1 2 0 Câu IV (1 điểm): Cho khối lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a và đỉnh A’ cách đều các đỉnh A, B, C. Cạnh bên AA’ tạo với đáy góc 600. Tính thể tích của khối lăng trụ theo a. Câu V (1 điểm) Cho 4 số thực x , y, z, t 1 . Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 1 P (xyzt 1) 4 4 4 4 x 1 y 1 z 1 t 1 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy cho D ABC có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, pt đường phân giác trong (AD): x – y = 0, đường cao (CH): 2x + y + 3 = 0. Tìm tọa độ các đỉnh của D ABC . 2. Trong không gian với hệ trục tọa độ Oxyz cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(-1;-3;1). Chứng tỏ A,B,C,D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC. Câu VIIa (1 điểm): Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ các chữ số của tập X có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và phải có mặt chữ số 1 và 2. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): x +3 y-5 một góc 450 . 1. Viết phương trình đường thẳng (d) qua A(1 ; 2) và tạo với đường thẳng (D): = 1 2 2. Trong không gian với hệ tọa độ Oxyz cho đường thẳng d là giao tuyến của 2 mp: (P) : x - my + z - m = 0 và Q) : mx + y - mz -1 = 0, m là tham số. a) Lập phương trình hình chiếu Δ của (d) lên mặt phẳng Oxy. b) Chứng minh rằng khi m thay đổi, đường thẳng Δ luôn tiếp xúc với một đường tròn cố định trong mặt phẳng Oxy. Câu VIIb (1 điểm): Giải phương trình sau trên tập C : (z2 + z)2 + 4(z2 + z) – 12 = 0 -----------------------------------------Hết -------------------------------------------- -17- http://www.VNMATH.com - 17 -
- 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 18 Thời gian làm bài: 180 phút . (ĐỀ THAM KHẢO) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): 2x 4 1. Khảo sát và vẽ đồ thị (C) của hàm số y = . x 1 2. Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(- 3;0) và N(- 1; - 1). Câu II (2 điểm): 1 3x 7 1. Giải phương trình: 4cos4x – cos2x cos4x + cos = 2 4 2 x x 2. Giải phương trình: 3 .2x = 3 + 2x + 1 Câu III (1 điểm): 1 s inx x 2 Tính tích phân: K = e dx 0 1+cosx Câu IV (1 điểm) Cho hình chóp tam giác đều S.ABC độ dài cạnh bên bằng 1. Các mặt bên hợp với mặt phẳng đáy một góc α. Tính thể tích hình cầu nội tiếp hình chóp S.ABC. 52 a 2 b 2 c 2 2abc 2 Câu V (1 điểm) Gọi a, b, c là ba cạnh của một tam giác có chu vi bằng 2. CMR: 27 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip (E) : x2 + 4y2 = 16 a) Đường thẳng d qua tiêu điểm trái , vuông góc với trục lớn , cắt (E) tại M và N . Tính độ dài MN b) Cmr : OM2 + MF1.MF2 luôn là hằng số với M tùy ý trên (E) x2 y z4 2. Trong không gian với hệ trục toạ độ Oxyz cho đường thẳng (d): và hai điểm A(1;2; - 1), B(7;- 2 3 2 2;3). Tìm trên (d) những điểm M sao cho khoảng cách từ đó đến A và B là nhỏ nhất. Câu VIIa(1 điểm) Tính giá trị biểu thức sau : M = 1 + i + i2 + i3 + …………….. + i2010 B. Theo chương trình Nâng cao: Câu VIb(2 điểm): 1. Viết phương trình đường thẳng (d) đi qua A(- 4 ; 6 ) và tạo với hai trục tọa độ một tam giác có diện tích là 6 x2 y 2 z 3 2. Trong không gian Oxyz , cho điểm A(1 ; 2 ; 3) và hai đường thẳng :(d1) : 1 2 1 x 1 y 1 z 1 và (d2) : 1 2 1 a) Tìm toạ độ điểm A’ đối xứng điểm A qua đường thẳng (d1) . b) Chứng tỏ (d1) và (d2) chéo nhau . Viết phương trình đường vuông góc chung của (d1) và (d2) . x x 8 y x y y Câu VIIb (1 điểm): Giải hệ phương trình: x y 5 -----------------------------------------Hết -------------------------------------------- -18- http://www.VNMATH.com - 18 -
- 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 19 Thời gian làm bài: 180 phút (ĐỀ THAM KHẢO) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y x 4 mx 3 2x 2 3mx 1 (1) . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2. Định m để hàm số (1) có hai cực tiểu. Câu II (2 điểm): 23 2 1. Giải phương trình: cos3x.cos3x – sin3x.sin3x = 8 2. Giải phương trình: 2x +1 + x x 2 2 x 1 x 2 2x 3 0 Câu III (2 điểm): 2 Tính tích phân: I x 1 sin 2xdx . 0 Câu IV (1 điểm) Cho hình chóp S.ABC có SA = SB = SC = a 2 . Đáy là tam giác ABC cân BAC 1200 , cạnh BC = 2a. Gọi M là trung điểm của SA, tính khoảng cách từ M đến mặt phẳng (SBC). Câu V (1 điểm) xy yz zx Cho x, y, z là các số thực dương thoả mãn: x + y + z = xyz.Tìm GTNN của A . z (1 xy ) x(1 yz ) y (1 zx) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M (–2 ; 5) và hai đường thẳng (d1) : 4x – 2y –1 = 0 ; x = -2 + 3t (d2) : y = t a) Tính góc giữa (d1) và (d2) . b) Tìm điểm N trên (d2) cách điểm M một khoảng là 5 2. Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm A(3;1;1), B(0;1;4), C(-1;-3;1). Lập phương trình của mặt cầu (S) đi qua A, B, C và có tâm nằm trên mặt phẳng (P): x +y – 2z + 4 = 0. Câu VIIa(1 điểm): Chứng minh 3 1 i 4i 1 i 4 1 i 2010 2008 2006 B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC với C(2; 3) , phương trình đường thẳng (AB): 3x – 4 y + 1 = 0 phương trình trung tuyến (AM) : 2x – 3y + 2 = 0 . Viết phương trình tổng quát của đường thẳng AC và BC. 2. Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1; -1; 0), B(1; -1; 2), C(2; -2; 1), D(-1; 1; 1). a) Viết phương trình của mặt phẳng chứa AB và song song với CD. Tính góc giữa AB, CD. b) Giả sử mặt phẳng (α) đi qua D và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao cho D là trực tâm của tam giác MNP. Hãy viết phương trình của (α). Câu VIIb(1 điểm): Giải phương trình: 4 x 2 x 1 2 2 x 1 sin 2 x y 1 2 0 . -----------------------------------------Hết -------------------------------------------- -19- http://www.VNMATH.com - 19 -
- 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 20 Thời gian làm bài: 180 phút (ĐỀ THAM KHẢO) . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2 2. Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Câu II (2 điểm) 1. Giải phương trình: cos2x + (1 + 2cosx)(sinx – cosx) = 0 ( x y)( x 2 y 2 ) 13 (x, y ) 2. Giải hệ phương trình: ( x y)( x 2 y 2 ) 25 e 3 2 ln x x Câu III (1 điểm) Tính tích phân: I dx 1 2 ln x 1 Câu IV (1 điểm) Cho lăng trụ ABC.A'B'C' có A'.ABC là h.chóp tam giác đều cạnh đáy AB = a, cạnh bên AA' = b. Gọi α là góc giữa hai mp (ABC) và (A'BC). Tính tanα và thể tích của khối chóp A'.BB'C'C Câu V (1 điểm) Cho hai số dương x, y thay đổi thỏa mãn điều kiện x + y 4. Tìm giá trị nhỏ nhất của biểu thức 3x 2 4 2 y 3 A= y2 4x II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn Câu VIa. (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2;1), đường cao qua đỉnh B có phương trình là x – 3y – 7 = 0 và đường trung tuyến qua đỉnh C có phương trình là x + y + 1 = 0. Xác định tọa độ các đỉnh B và C của tam giác. 2. Trong không gian với hệ toạ độ Oxyz, cho điểm G(1 ; 1 ; 1) . a) Viết phương trình mặt phẳng ( ) qua G và vuông góc với đường thẳng OG . b) ( ) cắt Ox, Oy ,Oz tại A, B,C . Chứng minh tam giác ABC đều và G là trực tâm tam giác ABC. Câu VIIa. (1 điểm) Cho hai đường thẳng song song d1 và d2. Trên đường thẳng d1 có 10 điểm phân biệt, trên đường thẳng d2 có n điểm phân biệt (n 2). Biết rằng có 2800 tam giác có đỉnh là các điểm đã cho. Tìm n. B.Theo chương trình Nâng cao Câu VIb. (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy , cho (E): 9x2 + 16y2 = 144 Viết phương trình đường thẳng đi qua M(2 ; 1) và cắt elip (E) tại A và B sao cho M là trung điểm của AB 2.Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 2x – y + 2z + 5 = 0 và các điểm A(0; 0; 4), B(2; 0; 0) a)Viết phương trình hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P) b)Viết phương trình mặt cầu đi qua O, A, B và tiếp xúc với mặt phẳng (P). Câu VIIb. (1 điểm) n x 2lg(103 ) 5 2(x 2)lg3 Tìm các giá trị x trong khai triển nhị thức Newton biết rằng số hạng thứ 6 của khai triển bằng 21 và C1 C3 2C2 . n n n -----------------------------------------Hết -------------------------------------------- -20- http://www.VNMATH.com - 20 -
CÓ THỂ BẠN MUỐN DOWNLOAD
-
63 Đề thi thử Đại học 2011 - Đề số 34
7 p | 384 | 85
-
63 Đề thi thử Đại học 2011 - Đề số 01-05
5 p | 172 | 66
-
63 Đề thi thử Đại học 2011 - Đề số 11-15
5 p | 152 | 42
-
63 Đề thi thử Đại học 2011 - Đề số 06-10
5 p | 138 | 41
-
63 Đề thi thử Đại học 2011 - Đề số 26-30
5 p | 119 | 31
-
63 Đề thi thử Đại học 2011 - Đề số 21-25
5 p | 142 | 27
-
63 Đề thi thử Đại học 2011 - Đề số 31
4 p | 106 | 23
-
63 Đề thi thử Đại học 2011 - Đề số 32
8 p | 116 | 22
-
63 Đề thi thử Đại học 2011 - Đề số 33
7 p | 99 | 21
-
63 Đề thi thử Đại học 2011 - Đề số 37
6 p | 82 | 15
-
63 Đề thi thử Đại học 2011 - Đề số 36
5 p | 85 | 15
-
63 Đề thi thử Đại học 2011 - Đề số 35
4 p | 82 | 15
-
63 Đề thi thử Đại học 2011 - Đề số 39
6 p | 79 | 12
-
63 Đề thi thử Đại học 2011 - Đề số 40
6 p | 97 | 12
-
63 Đề thi thử Đại học 2011 - Đề số 41
5 p | 100 | 12
-
63 Đề thi thử Đại học 2011 - Đề số 42
7 p | 71 | 12
-
63 Đề thi thử Đại học 2011 - Đề số 38
7 p | 78 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn