Bài giảng "Kiểm định thống kê phân tích dữ liệu với SPSS" cung cấp cho người học các kiến thức: Thống kê suy diễn, giải thiết nghiên cứu, các bước kiểm định giả thiết thống kê nghiên cứu, kiểm định mối quan hệ giữa hai biến định tính,... Mời các bạn cùng tham khảo nội dung chi tiết.
AMBIENT/
Chủ đề:
Nội dung Text: Bài giảng Kiểm định thống kê phân tích dữ liệu với SPSS - Hồ Thanh Trí
- KIỂM ĐỊNH THỐNG KÊ
PHÂN TÍCH DỮ LIỆU
VỚI SPSS
Hồ Thanh Trí
- THỐNG KÊ SUY DIỄN
• Mục tiêu: Dùng tham số mẫu để ước lượng các
tham số của đám đông.
• Phương pháp: Dùng các phương pháp kiểm
định thống kê để kiểm nghiệm các giả thuyết về
tổng thể.
- Giả thuyết nghiên cứu
• H0: Giả thuyết không (null hypothesis) – mô tả hiện
tượng lúc bình thường, dạng cấu trúc mang dấu bằng
(=, ≥, ≤).
• HR: Giả thuyết thay thế (alternative hypothesis) -
mô tả tình trạng ngược lại H0, dạng cấu trúc không
có dấu bằng (≠,>, Nếu loại bỏ H0 có bằng chứng cho rằng HR
đúng
- GIẢ THUYẾT NGHIÊN CỨU
(Hypothesis)
• Giả thuyết về mối quan hệ hay tương quan giữa hai hay nhiều biến
H0: Hai (nhiều) biến khảo sát độc lập với nhau (không có)
H1: Tồn tại mối quan hệ hoặc tương quan giữa 2 (nhiều) biến
• Giả thuyết về các giá trị trung bình
H0: Giá trị trung bình của 2 hoặc nhiều hơn 2 mẫu ngang bằng nhau
(không có sự khác biệt)
H1: Tồn tại sự khác biệt giữa các giá trị trung bình của 2 (nhiều)
biến.
• Giả thuyết về các phương sai
H0: Phương sai giữa 2 (nhiều) mẫu là ngang bằng
H1: Phương sai giữa 2 (nhiều) mẫu là không ngang bằng
- Giả thuyết nghiên cứu
Nguyên tắc kiểm định trong SPSS:
Dựa vào mức ý nghĩa kiểm định (xác xuất sai lầm loại
1) (Significance level), viết tắt Sig.
• Nếu Sig. ≥ : từ chối giả thuyết HR (chấp nhận H0).
• Nếu Sig. < : chấp nhận giả thuyết HR (từ chối H0).
Chú ý: = 0.05 (trong khoa học kinh tế)
- THỐNG KÊ SUY DIỄN
• Kiểm định mối quan hệ giữa hai biến định tính: kiểm định
mối quan hệ giữa hai biến trong bản chéo. Sử dụng kiểm
định Chi bình phương.
• Kiểm định sự khác nhau giữa hai giá trị trung bình
Kiểm định Student’s t cho hai mẫu độc lập (Independent
samples t test)
Kiểm định Student’s t cho cặp mẫu (Paired samples t-
test)
Phân tích phương sai một yếu tố (One-way ANOVA)
- THANG ĐO Phương pháp Ghi chú
kiểm định
Biến độc lập Biến phụ thuộc
Định danh Định danh Chi bình phương
Thứ bậc Thứ bậc Chi bình phương
Giá trị số Định lượng One Sample T-Test
Định tính (2 nhóm) Định lượng Independent Sample Hồi quy đơn dummy
T-Test
So sánh 2 biến Định lượng từng cặp Pair Sample T-Test
tương ứng
Định tính Định lượng One – way ANOVA
(3 nhóm trở lên)
1 Định lượng 1 Định lượng Hồi quy đơn (SLR)
Tương quan
2 Định lượng trở Định lượng Hồi quy bội (MLR) Dữ liệu thứ cấp (phi
lên Tương quan tuyến)
- THANG ĐO Phương pháp Ghi chú
kiểm định
Biến độc lập Biến phụ thuộc
Định lượng Định lượng Hồi quy bội (MLR)
Định tính + Dummy ANCOVA
Định tính (n biến) Định lượng ANOVA n chiều Hoặc MLR + Dumy
(MANCOVA)
Định tính (n biến) Định lượng MLR + Dumy + hỗ
tương MANCOVA
Định lượng (1 hay
nhiều biến) Định lượng MLR + Dumy + hỗ ANCOVA
Định tính tương
Định lượng (1 hay
nhiều biến) Định lượng (1 MVR + Dumy + hỗ
Định tính (1 hay hay nhiều biến) tương
nhiều biến)
Định lượng (1 hay
nhiều biến) Định tính (2 lựa Binary Logictic Hồi quy giá trị xác
Định tính (1 hay chọn) suất
nhiều biến)
- Các bước kiểm định giả thuyết nghiên
cứu
• Thiết lập giả thuyết cần kiểm định
• Chọn mức ý nghĩa mong muốn
• Chọn phép kiểm định thích hợp và tính giá trị thống kê
kiểm định của nó (giá trị xác xuất p hay mức nghĩa Sig.).
• So sánh giá trị p với mức . nghĩa a = 0.05 để ra quyết
định
• Diễn giải kết quả kiểm định giả thuyết nghiên cứu
- 1-KIỂM ĐỊNH MỐI QUAN HỆ GIỮA
HAI BIẾN ĐỊNH TÍNH
•
- •
- KIỂM ĐỊNH MỐI QUAN HỆ GIỮA
HAI BIẾN ĐỊNH TÍNH
• Điều kiện (hai biến định tính) : Dùng kiểm định Χ²
• Các giả thuyết:
H0: Không có mối quan hệ giữa trình độ chuyên môn và
nghề nghiệp (hai biến độc lập nhau)
H1: Có mối quan hệ giữa trình độ chuyên môn và nghề
nghiệp
• Χ² được thiết lập để xác định có hay không một mối liên hệ
giữa hai biến, nhưng nó không chỉ ra được cường độ của mối
liên hệ đó.
- KIỂM ĐỊNH MỐI QUAN HỆ GIỮA
HAI BIẾN ĐỊNH TÍNH
Các đại lượng thống kê trong kiểm định χ2
• Cramer (V) : độ mạnh của mối liên hệ 0 ≤ V ≤ 1
• Hệ số liên hợp (C) : 0≤C≤1
• Lamda (λ) : 0≤λ≤1
• Gamma (γ): -1 ≤ γ ≤ 1
- KIỂM ĐỊNH MỐI QUAN HỆ GIỮA 2 BIẾN
ĐỊNH TÍNH (Analyze > Descriptive Statistics
> Crosstabs)
- KIỂM ĐỊNH MỐI QUAN HỆ GIỮA 2
BIẾN ĐỊNH TÍNH
- 2-KIỂM ĐỊNH GIẢ THUYẾT VỀ TRUNG
BÌNH TỔNG THỂ (1 biến định lượng)
Các bước kiểm định giả thuyết nghiên cứu:
• Thiết lập giả thuyết cần kiểm định
• Chọn mức ý nghĩa mong muốn
• Chọn phép kiểm định thích hợp và tính giá trị thống kê kiểm
định của nó (giá trị xác xuất p hay mức nghĩa Sig.).
• So sánh giá trị p với mức ý nghĩa = 0.05 để ra quyết định
• Diễn giải kết quả kiểm định giả thuyết nghiên cứu
- KIỂM ĐỊNH THAM SỐ TRUNG BÌNH
(Analyze > Compare Means > One - Sample
T Test)
- KIỂM ĐỊNH THAM SỐ TRUNG BÌNH
(Analyze > Compare Means > One - Sample
T Test)
- 3-KIỂM ĐỊNH GIẢ THUYẾT VỀ SỰ KHÁC
BIỆT CỦA 2 TRUNG BÌNH TỔNG THỂ
Trong nhiều trường hợp cần so sánh trị trung bình về
một chỉ tiêu nghiên cứu nào đó giữa hai đối tượng bạn
quan tâm. Bạn có 2 biến tham gia trong một phép
kiểm định trung bình: 1 biến định lượng và 1 biến định
tính dùng để chia nhóm ra để tính, bạn sử dụng kiểm
định independent – samples T-test.
- KIỂM ĐỊNH GIẢ THUYẾT VỀ SỰ KHÁC
BIỆT CỦA 2 TRUNG BÌNH TỔNG THỂ
Bước 1: Kiểm nghiệm phương sai ngang bằng (Levene’s test)
Thiết lập giả thuyết
Ho: Phương sai giữa 2 mẫu ngang bằng nhau
H1: Phương sai giữa 2 mẫu không ngang bằng nhau
Kiểm nghiệm F
Công thức tính F:
Nếu p-value (sig.) α Chấp nhận Ho Lựa chọn kiểm nghiệm t so
sánh trung bình mẫu với điều kiện phương sai ngang bằng (Equal
variances assumed)