Cơ Sở Kỹ Thuật Thủy Lợi - CHUYỂN ĐỘNG THẾ & LỚP BIÊN
lượt xem 24
download
Để dẫn đến nguyên lí Ju-cốp-ski , ta xét một cửa chớp có mặt cắt ngang như hình vẽ, các chớp cách nhau đoạn t cho rằng dòng chảy qua cửa chớp là ổn định, phẳng, không xoáy, trực giao với đường sinh cửa chớp. - Áp dụng định lý động lượng đối với mặt bao ABCD có độ dày đơn vị các cạnh AB,CD đủ xa cửa chớp, để có áp suất và vận tốc không đổi.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Cơ Sở Kỹ Thuật Thủy Lợi - CHUYỂN ĐỘNG THẾ & LỚP BIÊN
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi CHƯƠNG IV CHUYỂN ĐỘNG THẾ & LỚP BIÊN Potential Flow & Boundry Layers *** ⇓4.1 CHUYỂN ĐỘNG THẾ I. Khái niệm về lưu số II. Các tính chất cơ bản của chuyển động thế III. Nguyên lý JU-CỐP-SKI IV. Thế phức V. Một vài ví dụ hàm phức trong dòng chảy thế phẳng ⇓4.2 LỚP BIÊN I. Khái niệm II. Phương trình lớp biên phẳng Bài giảng thủy lực 1 Trang 67
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi ⇓4.1 CHUYỂN ĐỘNG THẾ I. Khái niệm về lưu số: r B Cho trường vectơ V (u, v, w) , người ta định nghĩa lưu số vectơ dọc theo đường bất kỳ (C) nối liền r điểm A và điểm B bởi tích phân : v M rr Γ = ∫ V.d s = ∫ Vs .ds c c A Hay: Γ = ∫ ( u.dx + v.dy + w.dz ) c Tích phân nầy có thể tính toán, đặc biệt đối với những đường vòng khép kín. Ví dụ dòng chảy có đường dòng đồng tâm, vận tốc V = ω .r → Lưu số dọc theo đường (C1) là : B v Γ1 = ∫ Vs .ds = V ∫ ds = ω.r1 .2π .r1 = 2π .ω.r1 2 C c1 c1 (C1) Như vậy: Γ1 tăng theo bình phương bán kính . r1 Lưu số dọc theo đường ABCD là : r2 D A 2 2 ΓABCD = w.r2 .α.r2 − w.r1 .α.r1 = w.α( r2 − r1 ) Chú ý: Giá trị Γ đổi dấu khi đổi chiều đường cong (C) . II. Các tính chất cơ bản của chuyển động thế rr - Trong trường hợp tổng quát, tích phân Γ = ∫ v.d s phụ thuộc đường đi từ A đến c B. Để tích phân nầy chỉ phụ thuộc điểm A và B thì biểu thức u.dx + v.dy + w.dz là vi r phân toàn phần của hàm số ϕ nào đó, điều nầy dẫn đến : ro t V = 0 (4.1) - Dòng chảy thỏa tính chất nầy gọi là dòng chảy không xoáy và hàm số thỏa mãn tính chất : ∂ϕ ∂ϕ ∂ϕ u= ,v = ,w = (4.2) ∂x ∂y ∂z r r V = gradϕ Hay : (4.3) Dòng chảy còn được gọi là dòng chảy có thế vận tốc hay dòng chảy thế, và chúng ta sẽ có: Br r Γ = ∫ V.d s = ϕ B ( x , y, z ) − ϕ A ( x , y, z ) (4.4) A Khi đường cong khép kín thì Γ = 0 Đối với chất lỏng không nén, từ phương trình liên tục divV = 0, ta có được : ∂ 2ϕ ∂ 2ϕ ∂ 2ϕ ∆ϕ = 2 + 2 + 2 = 0 (4.5) ∂x ∂y ∂z Hay : ∆ϕ = 0. Vậy hàm số ϕ thỏa phương trình Laplace hay ϕ là hàm số điều hòa. Bài giảng thủy lực 1 Trang 68
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi ∂ϕ ∂ϕ Trong chuyển động phẳng thì: dϕ = ux.dx + uy.dy = .dx + .dy ∂x ∂y ∂ϕ ∂ϕ Nếu ϕ = const, thì: dϕ = 0 và .dx + .dy = 0 (4.6) ∂x ∂y Đây là phương trình đường đẳng thế lưu tốc trong chuyển động phẳng. Ta lại có phương trình đường dòng trong chuyển động phẳng : ux.dy - uy.dx = 0 (4.7) Nếu tìm được hàm Ψ(x,y) sao cho : ∂ψ ∂ψ = ux , = −u y (4.8) ∂y ∂x Thì phương trình đường dòng của chuyển động phẳng sẽ là : ∂ψ ∂ϕ .dx + .dy = 0 , hoặc dΨ = 0 (4.9) ∂x ∂y Do đó Ψ(x,y) = const, nên trị đường dòng không đổi dọc theo mỗi đường dòng. Từ (4.2) và (4.8) ta có mối liên hệ : ∂ϕ ∂Ψ ∂ϕ ∂Ψ = =− và (4.10) ∂x ∂y ∂y ∂x ∂ϕ ∂ψ ∂ϕ ∂ψ = Do đó : (4.11) . . ∂x ∂x ∂y ∂y Điều nầy có nghĩa là hai họ ϕ và Ψ trực giao nhau trong chuyển động thế phẳng và được gọi là những hàm số liên hiệp. Biểu thức (4.10) là điều kiện Cosi - Riemann cho phép ứng dụng hàm phức để nghiên cứu chuyển động thế . Mặt khác, ta có lưu lượng : dQ = ux.dy - uy.dx (4.12) ∂Ψ ∂Ψ , uy = − Mà ux = ∂y ∂x ∂ψ ∂ψ .dy + .dx = dψ Nên dQ = (4.13) ∂y ∂x ψ2 Q ψ −ψ = ∫ dψ = ψ 2 − ψ 1 Do đó : (4.14) 1 2 ψ1 Điều nầy có nghĩa hiệu số những trị số hàm số dòng cho ta lưu lượng chất lỏng chảy giữa hai đường dòng đó. Đó là ý nghĩa của hàm số dòng. III. Nguyên lý Ju-cốp-ski Để dẫn đến nguyên lí Ju-cốp-ski , ta xét một cửa chớp có mặt cắt ngang như hình vẽ, các chớp cách nhau đoạn t cho rằng dòng chảy qua cửa chớp là ổn định, phẳng, không xoáy, trực giao với đường sinh cửa chớp. - Áp dụng định lý động lượng đối với mặt bao ABCD có độ dày đơn vị các cạnh AB,CD đủ xa cửa chớp, để có áp suất và vận tốc không đổi. Chiếu phương trình động lượng lên trục ox , ta có: ρ.Q(v2 - v1 ) = (ρ.t.u2 ).u2 - (ρ.t.u1).u1 (4.15) ΣF = -X + (p1 - p2 ).t (4.16) Bài giảng thủy lực 1 Trang 69
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi ρ.t.(u22 -u12 ) = -X + (p1 - p2 ).t Nên : (4.17) Dòng chảy ổn định nên: t.u1 = t.u2 ⇒ u1 = u2 (4.18) Như vậy : X = (p1 - p2).t (4.19) O X Y R Y t D → ⎧u V2 ⎨ 2 ⎩v 2 X t A V1 vm V2 B U1=u2 Chiếu phương trình động lượng lên trục oy ta có : (ρ.t.u2 ).v2 - (ρ.t.u1).v1 = - Y (4.20) Và vì u1 = u2 nên : Y = ρ.t.u1(v1- v2) (4.21) Mặt khác từ phương trình Becnoulli ta có: 2 2 ρ.V1 ρ.V2 = p2 + p1 + (4.22) 2 2 2 2 2 2 ρ( u1 + v1 ) ρ( u 2 + v 2 ) p1 + = p2 + Hay : (4.23) 2 2 2 2 ρ.( v 2 − v 1 ) p1 − p 2 = Nên : (4.24) 2 Khử p1 - p2 giữa phương trình (4.19) và (4.24) được các thành phần của lực R (của chất lỏng tác dụng lên cửa chớp): ρ.t.( v 1 + v 2 ).( v 1 − v 2 ) X=− 2 Y = ρ.t.u 1 ( v 1 − v 2 ) Ta có lưu số Γ dọc ABCD theo chiều mũi tên: Γ = -t.v1 + ΓBC + t.v2 + ΓDA ΓBC = ΓAD = - ΓDA, nên Γ = t.(v2 - v1) Vì : v + v2 X =ρ 1 .Γ Nên: (4.25) 2 Y = - ρ.u1.Γ (4.26) Bài giảng thủy lực 1 Trang 70
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi r r V1 + V2 v + v2 r Đặt Vm = , có : um = u1; vm = 1 2 2 Nên : X = ρ.vm .Γ (4.27) Yr = -ρ.u1.Γ (4.28) r Ta thấy: R trực giao với Vm (do có tích vô hướng bằng không) và modun: R = ρ.Vm.Γ Từ đó, ta có nguyên lý Kutta - Ju-cốp-ski: Khi ta để cố định mộtrlá cửa chớp và đưa các lá khác ra xa vô cùng, sự lệch góc do dòng r chảy là bằng không ( V1 = V2 ) t = ∞ thì : v1 = v2 u1 = u2 = V r Lưu số Γ = t.(v2 - v1) không xác định, giả sử nó có giá trị hữu hạn thì lực R luôn luôn r r thẳng góc với Vm vectơ R thành phần X triệt tiêu. Lực nâng lên cửa chớp lăng trụ trên đơn vị chiều dài là : R = ρ.V.Γ (4.29) Định lý Kutta - Ju-cốp-ski • Nếu một vật lăng trụ đặt trong dòng chảy phẳng, ổn định có đường sinh thẳng góc với dòng chảy, • Dòng chảy là không xoáy bên ngoài vật nầy, • Vận tốc V ở vô cùng có cường độ và phương cố định, • Lưu số vectơ vận tốc quanh vật có giá trị Γ. Vật nầy sẽ bị tác dụng lên một hợp lực R bởi chất lỏng có đặc tính: r π r Hướng của R nhận được bằng cách quay vectơ V một góc theo chiều 2 ngược với lưu sô, Độ lớn là ρ.V.Γ.L, với L là chiều dài vật. IV. Thế phức - Chúng ta xét trường hợp dòng chảy phẳng dừng của chất lỏng lý tưởng không nén. Tất cả các đường dòng song song với một mặt phẳng nào đó, ta gọi là mặt phẳng (x,y) cho nên ϕ chỉ phụ thuộc x và y: ∂ϕ ∂ϕ vx = , vy = (4.30) ∂x ∂y Khi đó bài toán tìm trường tốc độ đơn giản đi rất nhiều nhờ ứng dụng được hàm biến phức. Chúng ta lấy hàm phức: W = Ψ + iϕ phụ thuộc vào biến số phức nào đó: z = x + iy ⇒ W = W(z) - Các biến số x và y là độc lập, vì vậy trong trường hợp tổng quát giá trị đạo hàm dW có thể phụ thuộc vào vấn đề các vi phân dx và dy trong biểu thức dz = dx + idy, tức dz Bài giảng thủy lực 1 Trang 71
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi là phụ thuộc vào chiều của vectơ dz trong mặt phẳng phức. Hàm W(z) gọi là giải tích, dW nếu như đạo hàm không phụ thuộc vào chiều của dz. dz Đi làm sáng tỏ những điều kiện phải áp đặt cho Ψ và ϕ trong trường hợp đó. Chúng ta viết vi phân dW trong các điều kiện x,y không đổi : ∂ψ i∂ϕ (dW ) x = ( + ).dx ∂x ∂x ∂Ψ i∂ϕ (dW ) y = ( + (4.31) ).dy ∂y ∂y dW - Để cho giới hạn tồn tại và không phụ thuộc vào x và y (riêng biệt nhau), dz điều cần thiết là các hệ số trước dx và idy cũng như trước idx và dy trong các vi phân (4.31) bằng nhau. ∂Ψ ∂ϕ ∂ϕ ∂Ψ = =− (4.32) , ∂x ∂y ∂x ∂y ( Đây chính là điều kiên Cauchy - Riemann ) Nếu như các điều kiện đó thỏa mãn thì : ∂Ψ i∂ϕ ∂Ψ i∂ϕ ∂ϕ i∂Ψ dW = ( + ).(dx + idy ) = ( + ).dz ≡ ( − )dz ∂x ∂x ∂x ∂x ∂y ∂y dW tức là tồn tại giới hạn đơn giá: . dz ∂ 2ϕ ∂ 2ϕ Khử Ψ khỏi (4.32), ta tìm thấy : + =0 (4.33) ∂x 2 ∂y 2 Thành thử hàm ϕ có thể được chọn làm hàm thế cho dòng chảy phẳng. Đối với hàm Ψ cũng vậy. Từ điều kiện Cauchy - Riemann chúng ta nhận được hệ thức sau : ∂ϕ ∂Ψ ∂ϕ ∂Ψ +. =0 (4.34) . ∂x ∂x ∂y ∂y - Điều đó có nghĩa là các Gradient của ϕ và Ψ vuông góc với nhau. Khi đó các đường đẳng trị của ϕ và Ψ cũng vuông góc với nhau, thành ra ∇ϕ hướng theo đường Ψ = const và ∇Ψ hướng theo ϕ = const. Như vậy trên mặt thành vách cứng phải có Ψ = const, vì khi đó vectơ ∇ϕ = 0 không có thành phần pháp tuyến đối với vách. - Lưới các đường thẳng vuông góc với nhau x = const, y = const được ánh xạ qua lưới các đường cong ϕ = const, Ψ = const; nhưng các đường cong nầy cũng vuông góc với nhau. Vì vậy phếp biến đổi W = W(z) gọi là bảo giác, tức là vẫn giữ nguyên hình dạng của các phần tử vô cùng nhỏ các mặt phẳng ánh xạ. - Chúng ta nhận xét rằng ϕ và Ψ có thể đổi chỗ cho nhau, tức coi các đường Ψ = const là các đường đẳng thế, còn ϕ = const là các đường dòng. Điều nầy tương ứng với thay đổi điều kiện biên. Dòng chất lỏng nhớt khi chảy qua vật cản rắn, có thể khác rất nhiều với dòng chảy thế mô tả ở đây. Nhưng trong chất lỏng siêu chảy Heli, tính chất thế nghiêm ngặt vẫn được thực hiện. Ngoài ra tại một số vùng của dòng chảy chất lỏng thực, bức tranh gần giống như dòng chảy thế. Bài giảng thủy lực 1 Trang 72
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi V. Một vài ví dụ hàm phức trong dòng chảy thế phẳng a - Dòng chảy song phẳng. Xét hàm W(z) = ϕ + iΨ = V.z = V ( x + iy ) Ở đây V = const Ta có ϕ = V.x = V.y Đường đẳng thế ϕ = const ⇒ x = const, đó là những đường song song trục y. Đường dòng Ψ = const ⇒ y = const, đó là những đường song song trục x. b - Điểm nguồn và điểm tụ. Điểm nguồn là điểm mà từ đó chất lỏng chảy đi theo phương bán kính, còn điểm tụ là điểm mà chất lỏng từ mọi hướng chảy về theo phương bán kính. Xét hàm phức : W(z) = ϕ + iΨ = Clogz W(z) = C.Logre iθ = C ( Logr + i.θ ), với C số thực. Ta có ϕ = C.Logr = C. Log x 2 + y 2 y Ψ = C.θ = C.arctg x Vậy: Những đường đẳng thế ϕ = const là những đường vòng tròn đồng tâm có r = const. y Những đường dòng là những đường có = const đi qua tâm các đường tròn. Đây là x dòng chảy theo phương bán kính của điểm nguồn hay điểm tụ ∂ϕ C.dr 1 C Vận tốc V = = .= θ = const ∂r r dr r qv Lưu lượng tổng cộng : qv = 2.π.r.V = 2.π.C. Do đó : C = 2π Nếu C > 0 thì q > 0, ta có điểm nguồn. C < 0 thì q < 0, ta có điểm tụ. qv Hàm giải tích sẽ là : W(z) = .Logz 2π Bài giảng thủy lực 1 Trang 73
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi ⇓4.2 LỚP BIÊN I. Khái niệm Khi dòng chảy bao quanh vật rắn, do ảnh hưởng ma sát với thành rắn, hình thành lớp mỏng sát thành, có chiều dày rất bé, gradient vận tốc lớn, gọi là lớp biên; miền còn lại có lưu tốc lớn hơn gradient vận tốc bé, thường là chảy rối, gọi là dòng ngoài (Hình 3.4). Chiều dày lớp biên δ thường gồm lớp mỏng chảy tầng δ t rất sát với thành rắn và lớp mỏng chuyển tiếp δ ct từ chảy tầng sang chảy rối: δ = δt + δct (3.34) Dòng chảy bao vật rắn, ngoài sức cản do ma sát, còn có sức cản gây ra do độ chênh lệch áp suất trước và sau vật cản (Hình 3.5), hoặc hỗn hợp giữa lực ma sát và độ chênh áp suất (Hình 3.6) τO t c δ P1 c r v τO t → → Hnh 3.4 Hnh 3.5 V V τ0 Trong lớp biên δ gradient vận tốc có trị số lớn, lưu tốc thay đổi rất nhanh từ trị số zero trên mặt vật rắn, đến vận tốc V ∞ của dòng ngoài đi tới, tại khoảng cách đủ xa vật, chưa bị nhiễu động bởi vật. Chiều dày lớp biên P1 P2 δ được tính từ mặt vật rắn đến điểm trong dòng bao có P2 < P 1 lưu tốc u = u δ = 0,99V. Bên ngoài lớp biên ảnh hưởng của lực ma sát có thể bỏ qua, chất lỏng xem như không nhớt, giống chuyển động thế (Hình 3.7). τ0 → V Profile vận tốc dng Đường viền Hnh 3.6 ăi của lớp biên y δ Bề dăy lớp biín δ τ d t d ấ Profile vận tốc lớp biín x Hnh 3.7 Bài giảng thủy lực 1 Trang 74
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi Trong lớp biên chảy tầng δ t , ứng suất ma sát trong chất lỏng là do tính nhớt gây ra: du τ = µ. ( 3.35 ) dn Trong lớp biên chảy rối δ ct , ứng suất chủ yếu do mạch động rối của dòng chảy (Hình 3.8): du τ = ρ .ε . ( 3.36) dn với: µ . , ε được gọi hệ số nhớt động lực và hệ số nhớt rối động học. Vì dòng chảy từ trái qua phải nên chiều dày lớp biên mở rộng dần. Lớp biên rối → δ ** Bề dăy lấn dng V → ∞ V u ∞ y δ → → V Lớp mỏng δ ∗ V ∞ → sât thănh ∞ V Lớp biên chảy tầng ∞ Chuyển tiếp Hình 3.8 Hình 3.9 a/ Bề dày dịch chuyển δ *: Xét dòng chảy nhớt, không nén (Hình 3.9), do ảnh hưởng của lớp biên mà đường dòng bị lệch khỏi phương ban đầu và lấn vào dòng ngoài một đoạn δ * theo phương trục y. Vì thế bề dày dịch chuyển δ * còn được được gọi là chiều dày lấn dòng; nó được tính từ cân bằng khối lượng: ∫0 ρu.dy = ∫δ ρUdy = U ( Y − δ ) * Y Y * Ta rút ra: ⎛ u⎞ u u δ * = Y − ∫0Y dy = ∫0Y dy − ∫0Y dy = ∫0Y ⎜1 − ⎟dy ⎝ U⎠ U U ⎛ u⎞ Hay viết ở dạng khác: δ * = ∫0δ⎜ 1 − x ⎟dy ( 3.37 ) ⎝ V⎠ δ * đặc trưng cho phần lưu lượng bị hụt đi trong lớp biên dày δ do tác dụng hãm của lớp biên. Bề dày động lượng, hay tổn thất động lượng cho bởi công thức: u⎛ u⎞ δ ** = ∫0δ x ⎜1 − x ⎟dy ( 3.38 ) V⎝ V⎠ Bài giảng thủy lực 1 Trang 75
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi δ ** đặc trưng cho phần động lượng của chất lỏng bị hụt đi trong lớp biên, do tác dụng hãm của lực ma sát trên mặt vật rắn. II. Phương trình lớp biên phẳng Từ phương trình Navier -Stocks thiết lập cho bài toán trong mặt phẳng xoy chuyển động dừng (ổn định), bỏ qua lực khối, và sau khi đơn giản bằng cách so sánh bậc của các số hạng trong hệ phương trình nầy, Prandtl nhận được hệ thống phương trình lớp biên phẳng chảy tầng như sau: ∂u x ∂u y + =0 (3.39) ∂x ∂y ∂u ∂u ∂2u 1 ∂p u x . x + u y . x = − . + ν. 2x (3.40) ∂x ∂y ρ ∂x ∂y Hệ phương trình (3.39) và (3.40) phải thỏa mãn điều kiện sau: - Trên mặt vật rắn cố định: y = 0 , ux = uy = 0 y → ∞ , ux = V - Trong dòng ngoài: Hệ phương trình nầy không khép kín, do đó muốn giải cần phải thành lập thêm phương trình bổsung. Ví dụ: Cho ống thép có bán kính R = 200 mm có hệ số ma sát f = 0,025 dẫn lưu lượng Q = 1 lít/giây. Hãy tính bề dày dịch chuyển δ * và bề dày động lượng δ ** của dòng chảy trong ống nầy. Giải: Ta có bề dày dịch chuyển δ * tính theo công thức: R⎛ u⎞ δ⎛ u⎞ δ * = ∫0 ⎜1 − x ⎟dy = ∫0 ⎜1 − x ⎟dy ⎜ u⎟ ⎝ V⎠ ⎝ mã ⎠ Mặt khác ta có: 1 ⎛ y ⎞n 1 1 u =⎜ ⎟ , với: n ≈ = = 0,3 ⎝R⎠ u max f 0,025 R ⎡ ⎞⎤ ⎛ ( nn 1 ) + ⎛ u⎞ n ⎜y ⎟⎥ ⎛ ⎞ δ * = ∫0R ⎜1 − x ⎟dy = ⎢ y − n R 200 ⎟⎥ = ⎜ R − n + 1 R ⎟ = n + 1 = 6,3 + 1 = 27mm n +1⎜ n ⎜ u⎟ ⎢ ⎝ ⎠ 1 ⎜R ⎟⎥ ⎝ mã ⎠ ⎢ ⎝ ⎠⎦ 0 ⎣ Bề dày động lượng δ ** tính theo công thức: ⎡ u ⎛ u ⎞2 ⎤ ⎛ u⎞ ⎛ ux ⎞ ux Ru ⎜1 − ⎟dy = ∫0 ⎢ −⎜ ⎟ ⎥dy δ= ⎜1 − ⎟dy = ∫0 δ ** R ∫0 u mã ⎜ u mã ⎟ ⎜ ⎟ ⎝ ⎠ ⎢ u mã ⎝ u mã ⎠ ⎥ ⎝ ⎠ V V ⎣ ⎦ R ⎡ ⎞⎤ ⎛ ( n +1) ⎞ ⎛ ( n+2) ⎡⎛ y ⎞ ⎤ 2 n ⎜y n ⎟ n ⎜y n ⎟⎥ 1 ⎛y⎞ ⎥dy = ⎢ n n δ ** = ∫0R ⎢⎜ ⎟ − ⎜ ⎟ ⎟− n +2⎜ 2 ⎢ n +1⎜ 1 ⎟⎥ ⎢⎝ R ⎠ ⎝R⎠ ⎥ ⎜ Rn ⎟ ⎜ Rn ⎟⎥ ⎣ ⎦ ⎢ ⎝ ⎠ ⎝ ⎠⎦ 0 ⎣ ⎤⎛ ⎞ ⎡n n n δ ** = ⎢ R− R⎥ = ⎜ ⎜ ( n + 1)( n + 2) ⎟.R ⎟ ⎣n +1 n+2 ⎦ ⎝ ⎠ Bài giảng thủy lực 1 Trang 76
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi ⎛ ⎞ 6,3 δ ** = ⎜ ⎜ (6,3 + 1)(6,3 + 2) ⎟.200mm = 0,13mm ⎟ ⎝ ⎠ Câu hỏi: 1. Nêu khái niệm về chuyển động thế và chuyển động xoáy, điều kiện xảy ra? 2. Khái niệm về lưu số? 3. Nêu các tính chất cơ bản của chuyển động thế? 4. Nêu nguyên lý JU-CỐP-SKI về lực nâng lên cánh cửa chớp? 5. Thế phức là gì? 6. Trong điều kiện dòng chảy như thế nào thì có thể áp dụng lý thuyết hàm phức? 7. Với các bài toán khi áp dụng được lời gải bằng hàm biến phức, thì so với lời giải tích thông thường thế nào? 8. Khái niệm về lớp biên? Mục đích của việc nghiên cứu lớp biên là để làm gì? BÀI TẬP z2 Bài 1. Thể phức dòng chảy phẳng cho bởi W ( z ) = a. 2 a) Vẽ họ đường dòng và đường đẳng thế 11 = sec b) Xác định các thành phần vận tốc tại điểm M(x=3cm, y=0,2cm) khi a5 Đáp số : a) Hệ đường dòng là các hypecbol tiệm cận hệ trục xoy b) vx=15cm/s, vy=-1cm/s. Bài 2. Cho dòng phẳng chảy theo trục ox bao quanh hình trụ tròn có trục thẳng đứng có bán kính a=2m. Xác định các điểm trên các trục x và y sao cho trị số vx bị giảm 1% so với dòng ở xa. Cho biết thể phức dòng phẳng bao quanh hình trụ có dạng ⎛ a2 ⎞ W ( z ) = v⎜ z + ⎟ . ⎜ z⎟ ⎝ ⎠ ⎧ x = 20m ⎧x = 0 Đáp số : ; ⎨ ⎨ ⎩y = 0 ⎩ y = 20m Bài 3. Dòng dầu tự do (ρ=860 kgm-3, υ=10-5m2s-1) chuyển động với lưu tốc 2 ms-1 trên mặt bản mỏng dài 3m, rông 2m. Tính chiều dày lớp biên và ứng suất ma sát tại điểm giữa của bản cũng như lực cản ma sát trên cả hai mặt bản. 13,6mm ; 2,085 Nm-2; 35,44N Đáp số : Bài 4. Một bản phẳng mỏng dài 20m, rộng 3m được giữ cố định và ngập trong dòng nước ở 20oC có lưu tốc 9ms-1. Xác định vị trí tại đó lớp biên chảy tầng chuyển sang chảy rối và lực ma sát tác dụng lên bản. Đap số : 10mm; 9,5 KN. Bài giảng thủy lực 1 Trang 77
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi Bài giảng thủy lực 1 Trang 78
- Khoa Xáy Dựng Thủy lợi - Thủy điện Bộ môn Cơ Sở Kỹ Thuật Thủy Lợi TÀI LIỆU THAM KHẢO 1. Nguyen The Hung, Hydraulics, Vol. 1, NXB Xay Dung 2006. 2. Hoàng Văn Quý, Thuy Luc và Khí động lực, NXB KHKT 1997. 3. Doughlas J. F. et al., Fluid Mechanics, Longman Scientific & Technical 1992. 4. Edward J. Shaughnessy et al., Introduction to Fluid Mechanics, Oxford University Press 2005. 5. Frank M. White, Fluid Mechanics, McGrawHill 2002. 6. John A. Roberson & Clayton T. Crowe, Engineering Fluid Mechanics, John wiley & Sons, Inc 1997. 7. Philip M. Gerhart et al., Fundamental of Fluid Mechanics, McGrawHill 1994. Website tham khảo: http://gigapedia.org http://ebookee.com.cn http://www.info.sciencedirect.com/books http://db.vista.gov.vn http://dspace.mit.edu http://ecourses.ou.edu http://www.dbebooks.com The end Bài giảng thủy lực 1 Trang 79
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sổ tay Kỹ Thuật Thuỷ Lợi -Phần 2-Tập 4 - Chương 2
19 p | 418 | 194
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 1
9 p | 331 | 108
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 2
20 p | 410 | 106
-
Cơ Sở Kỹ Thuật Thủy Lợi - DÒNG CHẢY ỔN ĐỊNH TRONG ỐNG CÓ ÁP
16 p | 448 | 90
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 8
13 p | 265 | 73
-
Cơ Sở Kỹ Thuật Thủy Lợi - Bài tập THUỶ TĨNH
6 p | 348 | 73
-
Cơ Sở Kỹ Thuật Thủy Lợi - DÒNG CHẢY RA KHỎI LỖ VÒI - DÒNG TIA
17 p | 224 | 70
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 7
16 p | 195 | 60
-
Bài giảng thủy lực công trình - Chương 9
12 p | 251 | 56
-
Cơ Sở Kỹ Thuật Thủy Lợi - CHUYỂN ĐỘNG KHÔNG ỔN ĐỊNH TRONG ỐNG CÓ ÁP - HIỆN TƯỢNG NƯỚC VA VÀ SỰ DAO ĐỘNG CỦA KHỐI NƯỚC TRONG THÁP ĐIỀU ÁP
13 p | 222 | 52
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 6
17 p | 175 | 49
-
Giáo trình Cơ sở kỹ thuật thủy lợi_Chương 4
12 p | 194 | 42
-
Cơ Sở Kỹ Thuật Thủy Lợi - THỦY TĨNH
20 p | 171 | 42
-
Cơ Sở Kỹ Thuật Thủy Lợi - ỨNG DỤNG PHƯƠNG TRÌNH BECNOULLI
6 p | 202 | 41
-
Cơ Sở Kỹ Thuật Thủy Lợi - Mở đầu
9 p | 164 | 37
-
CƠ SỞ KHOA HỌC VÀ KHẢ NĂNG NHÂN RỘNG BIỆN PHÁP THỦY LỢI PHỤC VỤ SẢN XUẤT RAU AN TOÀN Ở PHƯỜNG LĨNH NAM QUẬN HOÀNG MAI – HÀ NỘI
9 p | 112 | 16
-
Quy hoạch thủy lợi - Chương 3
16 p | 58 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn