intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đạo hàm và phương trình Cauchy-Riemann

Chia sẻ: Hanh My | Ngày: | Loại File: PDF | Số trang:2

293
lượt xem
15
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Như trong giải tích thực, một hàm phức "trơn" w = f(z) có thể có đạo hàm tại một điểm nào đó trong miền xác định Ω. Thực tế định nghĩa đạo hàm tương tự trong trường hợp thực, với một điểm khác biệt quan trọng: Trong giải tích thực, giới hạn chỉ có thể có bằng việc di chuyển trên đường thẳng thực một chiều. Trong giải tích phức, giới hạn có được bằng cách di chuyển theo hướng bất kì trên mặt phẳng phức hai chiều. Nếu giới hạn này tồn tại với mọi điểm z trong Ω, khi...

Chủ đề:
Lưu

Nội dung Text: Đạo hàm và phương trình Cauchy-Riemann

  1. Đạo hàm và phương trình Cauchy-Riemann Như trong giải tích thực, một hàm phức "trơn" w = f(z) có thể có đạo hàm tại một điểm nào đó trong miền xác định Ω. Thực tế định nghĩa đạo hàm tương tự trong trường hợp thực, với một điểm khác biệt quan trọng: Trong giải tích thực, giới hạn chỉ có thể có bằng việc di chuyển trên đường thẳng thực một chiều. Trong giải tích phức, giới hạn có được bằng cách di chuyển theo hướng bất kì trên mặt phẳng phức hai chiều. Nếu giới hạn này tồn tại với mọi điểm z trong Ω, khi đó f(z) được gọi là khả vi trên Ω. Có thể chứng minh rằng mọi hàm khả vi f(z) đều là hàm giải tích. Đây là kết quả mạnh hơn trường hợp hàm thực. Trong giải tích thực, ta có thể xây dựng hàm f(x) có đạo hàm bậc nhất tại mọi nơi nhưng đạo hàm bậc hai không tồn tại tại một hay nhiều điểm trên tập xác định của hàm. Tuy nhiên trên mặt phẳng phức, nếu một hàm f(z) khả vi trong một lân cận thì nó sẽ khả vi vô hạn trong lân cận đó. Bằng cách áp dụng phương pháp của giải tích véc tơ để tính đạo hàm riêng của hai hàm vec tơ u(x, y) và v(x, y) vào cho hàm f(z), và xem xét hai đường đến z trong Ω, có thể chỉ ra rằng đạo hàm tồn tại nếu và chỉ nếu
  2. Đồng nhất phần thực và phần ảo của biểu thức ta có phương trình Cauchy-Riemann: hoặc kí hiệu khác, Vi phân hệ hai phương trình đạo hàm riêng này, đầu tiên theo x, sau đó theo y ta dễ dàng chỉ ra rằng hoặc dưới dạng kí hiệu khác, Nói cách khác, phần thực và phần ảo của một hàm phức khả vi là các hàm điều hòa vì chúng thỏa mãn phương trình Laplace.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
9=>0