Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Toán
lượt xem 3
download
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Toán nêu lên đáp án câu hỏi và cách tính điểm đối với mỗi ý trong từng vế của từng bài toán. Mời các bạn tham khảo tài liệu để nắm bắt nội dung cụ thể.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Toán
- BOÄ GIAÙO DUÏC VAØ ÑAØO TAÏO KYØ THI TRUNG HOÏC PHOÅ THOÂNG QUOÁC GIA NAÊM 2015 ÑAÙP AÙN - THANG ÑIEÅM ÑEÀ THI CHÍNH THÖÙC Moân thi: TOAÙN (Ñaùp aùn - Thang ñieåm goàm 03 trang) −−−−−−−−−−−−−−−−−−−−−−−−−−−− Caâu Ñaùp aùn (Trang 01) Ñieåm • Taäp xaùc ñònh: D = R. • Söï bieán thieân: 0,25 - Chieàu bieán thieân: y 0 = 3x2 − 3; y 0 = 0 ⇔ x = ±1. Caùc khoaûng ñoàng bieán: (−∞; −1) vaø (1; +∞); khoaûng nghòch bieán: (−1; 1). M - Cöïc trò: Haøm soá ñaït cöïc ñaïi taïi x = −1, y CÑ = 2; ñaït cöïc tieåu taïi x = 1, y CT = −2. 0,25 - Giôùi haïn taïi voâ cöïc: lim y = −∞; lim y = +∞. x→−∞ x→+∞ O • Baûng bieán thieân: x −∞ −1 1 +∞ C y0 + 0 − 0 + 0,25 2 * H * +∞ y H H 7. HH 1 −∞ j −2 (1,0ñ) • Ñoà thò: y 24 2 H 1 x 0,25 −1 O N −2 SI N 4 Ta coù f (x) xaùc ñònh vaø lieân tuïc treân ñoaïn [1; 3]; f 0 (x) = 1 − . 0,25 x2 YE 2 Vôùi x ∈ [1; 3], f 0(x) = 0 ⇔ x = 2. 0,25 (1,0ñ) 13 Ta coù f (1) = 5, f (2) = 4, f (3) = . 0,25 3 Giaù trò lôùn nhaát vaø giaù trò nhoû nhaát cuûa f (x) treân ñoaïn [1; 3] laàn löôït laø 5 vaø 4. 0,25 TU a) Ta coù (1 − i)z − 1 + 5i = 0 ⇔ z = 3 − 2i. 0,25 Do ñoù soá phöùc z coù phaàn thöïc baèng 3, phaàn aûo baèng −2. 0,25 3 b) Phöông trình ñaõ cho töông ñöông vôùi x 2 + x + 2 = 8 0,25 (1,0ñ) hx = 2 ⇔ x = −3. 0,25 Vaäy nghieäm cuûa phöông trình laø x = 2; x = −3.
- Caâu Ñaùp aùn (Trang 02) Ñieåm Ñaët u = x − 3; dv = ex dx. Suy ra du = dx; v = ex . 0,25
- 1 R1 Khi ñoù I = (x − 3)e
- − ex dx x 0,25
- 4 0 0 (1,0ñ)
- 1
- 1 = (x − 3)ex
- − ex
- 0,25
- 0 0 = 4 − 3e. 0,25 − −→ Ta coù AB = (1; 3; 2). 0,25 x−1 y+2 z−1 5 Ñöôøng thaúng AB coù phöông trình = = . 0,25 1 3 2 (1,0ñ) Goïi M laø giao ñieåm cuûa AB vaø (P ). Do M thuoäc AB neân M (1 + t; −2 + 3t; 1 + 2t). 0,25 M M thuoäc (P ) neân 1 + t − (−2 + 3t) + 2(1 + 2t) − 3 = 0, suy ra t = −1. Do ñoù M (0; −5; −1). 0,25 1 a) Ta coù cos 2α = 1 − 2 sin2 α = . 0,25 O 9 1 1 14 Suy ra P = 1 − 2+ = . 0,25 6 3 3 9 C (1,0ñ) b) Soá phaàn töû cuûa khoâng gian maãu laø C 325 = 2300. 0,25 Soá keát quaû thuaän lôïi cho bieán coá “coù ít nhaát 2 ñoäi cuûa caùc Trung taâm y teá cô sôû” laø 7. 2090 209 0,25 C220 .C15 + C320 = 2090. Xaùc suaát caàn tính laø p = = . 2300 230 [ = (SC, \ Ta coù SCA (ABCD)) = 45◦ , √ 24 0,25 suy ra SA = AC = 2 a. √ 3 S 1 1√ 2a VS.ABCD = SA.SABCD = . 2 a.a = 2 . 0,25 3 3 3 H Keû ñöôøng thaúng d qua B vaø song song AC. Goïi M laø hình chieáu vuoâng goùc cuûa A treân d; H laø hình chieáu 7 vuoâng goùc cuûa A treân SM . Ta coù SA⊥BM, M A⊥BM 0,25 N H (1,0ñ)
- A neâ n AH⊥BM . Suy ra AH⊥(SBM ). D Do ñoù d(AC, SB) = d(A, (SBM )) = AH. SI Tam giaùc SAM vuoâng taïi A, coù ñöôøng cao AH, neân M d 1 1 1 5 = + = 2. B C AH 2 SA 2 AM 2 2a √ 0,25 10 a N Vaäy d(AC, SB) = AH = . 5 AC Goïi M laø trung ñieåm AC. Ta coù M H = M K = , YE 2 neân M thuoäc ñöôøng trung tröïc cuûa HK. Ñöôøng trung tröïc cuûa HK coù phöông trình 7x + y − 10 = 0, neân toïa 0,25 x − y + 10 = 0 ñoä cuûa M thoûa maõn heä 7x + y − 10 = 0. TU A Suy ra M (0; 10). \ = HCA Ta coù HKA \ = HAB \ = HAD,\ neân ∆AHK 8 M caân taïi H, suy ra HA = HK. Maø M A = M K, neân A 0,25 (1,0ñ) ñoái xöùng vôùi K qua M H. −−→ D Ta coù M H = (5; 15); ñöôøng thaúng M H coù phöông B C trình 3x − y + 10 = 0. Trung ñieåm AK thuoäc M H vaø H AK⊥M H neân toïa ñoä ñieåm A thoûa maõn heä 0,25 ( x + 9 y − 3 K 3 − + 10 = 0 2 2 (x − 9) + 3(y + 3) = 0. Suy ra A(−15; 5). 0,25
- Caâu Ñaùp aùn (Trang 03) Ñieåm Ñieàu kieän: x > −2. Phöông trình ñaõ cho töông ñöông vôùi hx = 2 (x − 2)(x + 4) (x + 1)(x − 2) x+4 x+1 0,25 = √ ⇔ x2 − 2x + 3 x+2+2 =√ (1). x2 − 2x + 3 x+2+2 √ Ta coù (1) ⇔ (x + 4)( x + 2 + 2) = (x + 1)(x2 − 2x + 3) √ √ ⇔ ( x + 2 + 2)[( x + 2)2 + 2] = [(x − 1) + 2][(x − 1)2 + 2] (2) 0,25 9 Xeùt haøm soá f (t) = (t + 2)(t 2 + 2). (1,0ñ) Ta coù f 0 (t) = 3t2 + 4t + 2, suy ra f 0 (t) > 0, ∀t ∈ R, neân f (t) ñoàng bieán treân R. √ √ x>1 Do ñoù (2) ⇔ f ( x + 2) = f (x − 1) ⇔ x + 2 = x − 1 ⇔ 0,25 x2 − 3x − 1 = 0 M √ 3 + 13 ⇔x= . 2 √ 0,25 3 + 13 O Ñoái chieáu ñieàu kieän, ta ñöôïc nghieäm cuûa phöông trình ñaõ cho laø x = 2; x = . 2 Ñaët t = ab + bc + ca. C 1h i Ta coù 36 = (a + b + c)2 = (a − b)2 + (b − c)2 + (c − a)2 + 3t > 3t. Suy ra t 6 12. 2 Maët khaùc, (a − 1)(b − 1)(c − 1) > 0, neân abc > ab + bc + ca − 5 = t − 5; 0,25 7. vaø (3 − a)(3 − b)(3 − c) > 0, neân 3t = 3(ab + bc + ca) > abc + 27 > t + 22. Suy ra t > 11. Vaäy t ∈ [11; 12]. 24 a2 b2 + b2 c2 + c2 a2 + 2abc(a + b + c) + 72 abc Khi ñoù P = − ab + bc + ca 2 0,25 (ab + bc + ca)2 + 72 abc t2 + 72 t − 5 t2 + 5t + 144 = − 6 − = . 10 ab + bc + ca 2 t 2 2t H (1,0ñ) t2 + 5t + 144 t2 − 144 Xeùt haøm soá f (t) = , vôùi t ∈ [11; 12]. Ta coù f 0 (t) = . 2t 2t2 N Do ñoù f 0 (t) 6 0, ∀t ∈ [11; 12], neân f (t) nghòch bieán treân ñoaïn [11, 12]. 0,25 160 160 Suy ra f (t) 6 f (11) = . Do ñoù P 6 . SI 11 11 160 Ta coù a = 1, b = 2, c = 3 thoûa maõn ñieàu kieän cuûa baøi toaùn vaø khi ñoù P = . 11 0,25 N 160 Vaäy giaù trò lôùn nhaát cuûa P baèng . 11 YE −Heát−−−−−−−− −−−−−−− TU
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đáp án đề thi tuyển sinh Đại học năm 2010 Môn Tiếng Trung Quốc khối D
2 p | 670 | 213
-
Đáp án đề thi tuyển sinh Cao đẳng năm 2010 môn Tiếng Trung khối D
2 p | 317 | 57
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 864
7 p | 260 | 56
-
Giải chi tiết đề thi trung học phổ thông quốc gia môn Hóa học
0 p | 372 | 43
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 138
7 p | 216 | 25
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 362
7 p | 216 | 22
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 695
7 p | 210 | 21
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 753
7 p | 207 | 21
-
Đề thi và đáp án đề thi tuyển sinh đại học năm 2012 môn Tiếng Trung khối D- Mã đề 528
7 p | 146 | 16
-
Đáp án đề thi chuyên ngữ năm 2013
2 p | 137 | 6
-
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Sinh học
2 p | 96 | 5
-
Đáp án Đề thi Trung học phổ thông Quốc gia 2015 môn Ngữ văn
2 p | 129 | 5
-
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Lịch sử
2 p | 128 | 3
-
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Tiếng Anh
2 p | 81 | 3
-
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Hóa học
2 p | 73 | 3
-
Đáp án Đề thi Trung học phổ thông Quốc gia 2015 môn Địa lý
3 p | 67 | 2
-
Đáp án Đề thi Trung học phổ thông Quốc gia năm 2015 môn Vật lí
2 p | 67 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn