intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2009 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT

Chia sẻ: đinh Công Chánh | Ngày: | Loại File: PDF | Số trang:4

85
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Sau đây là Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2009 môn Toán, khối D (Đáp án chính thức) của Bộ GD&ĐT giúp các em học sinh tự đối chiếu, đánh giá sau khi thử sức mình với đề thi tuyển sinh đại học, cao đẳng năm 2009 môn Toán, khối D. Cùng tham khảo nhé. 

Chủ đề:
Lưu

Nội dung Text: Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2009 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN – THANG ĐIỂM ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 ĐỀ CHÍNH THỨC Môn: TOÁN; Khối: D (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm I 1. (1,0 điểm) Khảo sát… (2,0 điểm) Khi m = 0, y = x 4 − 2 x 2 . • Tập xác định: D = \. • Sự biến thiên: 0,25 - Chiều biến thiên: y ' = 4 x3 − 4 x; y ' = 0 ⇔ x = ±1 hoặc x = 0. Hàm số nghịch biến trên: (−∞ ; − 1) và (0;1); đồng biến trên: (−1;0) và (1; + ∞). - Cực trị: Hàm số đạt cực tiểu tại x = ±1, yCT = −1; đạt cực đại tại x = 0, yCĐ = 0. 0,25 - Giới hạn: lim y = lim y = +∞. x →−∞ x →+∞ - Bảng biến thiên: x −∞ −1 0 1 +∞ y' − 0 + 0 − 0 + +∞ 0 +∞ 0,25 y −1 −1 • Đồ thị: y 8 0,25 −1 O 1 −2 2 x −1 2. (1,0 điểm) Tìm m... Phương trình hoành độ giao điểm của (Cm ) và đường thẳng y = −1: x 4 − (3m + 2) x 2 + 3m = −1. 0,25 Đặt t = x 2 , t ≥ 0; phương trình trở thành: t 2 − (3m + 2)t + 3m + 1 = 0 ⇔ t = 1 hoặc t = 3m + 1. 0,25 ⎧0 < 3m + 1 < 4 Yêu cầu của bài toán tương đương: ⎨ 0,25 ⎩3m + 1 ≠ 1 1 ⇔ − < m < 1, m ≠ 0. 0,25 3 II 1. (1,0 điểm) Giải phương trình… (2,0 điểm) Phương trình đã cho tương đương: 3 cos5 x − (sin 5 x + sin x) − sin x = 0 3 1 0,25 ⇔ cos5 x − sin 5 x = sin x 2 2 ⎛π ⎞ ⇔ sin ⎜ − 5 x ⎟ = sin x 0,25 ⎝3 ⎠ Trang 1/4
  2. Câu Đáp án Điểm π π ⇔ − 5 x = x + k 2π hoặc − 5 x = π − x + k 2π . 0,25 3 3 π π π π Vậy: x = +k hoặc x = − +k ( k ∈ ] ). 0,25 18 3 6 2 2. (1,0 điểm) Giải hệ phương trình… ⎧ 3 ⎪⎪ x + y + 1 − x = 0 Hệ đã cho tương đương: ⎨ 0,25 ⎪( x + y ) 2 − 5 + 1 = 0 ⎪⎩ x2 ⎧ 3 ⎧ 3 ⎪x + y = x −1 ⎪⎪ x + y = x − 1 ⎪ ⇔ ⎨ 2 ⇔ ⎨ 0,25 ⎪⎛ 3 − 1 ⎞ − 5 + 1 = 0 ⎪ 4 −6 +2=0 ⎜ ⎪⎩⎝ x ⎠ ⎟ 2 ⎪⎩ x 2 x x ⎧1 1 ⎧1 ⎪⎪ x = 2 ⎪ =1 ⇔ ⎨x hoặc ⎨ 0,25 ⎪⎩ x + y = 2 ⎪x + y = 1 ⎪⎩ 2 ⎧ x = 2 ⎧x = 1 ⎪ ⇔ ⎨ hoặc ⎨ 3 ⎩ y = 1 ⎪⎩ y = − 2 . 0,25 ⎛ 3⎞ Nghiệm của hệ: ( x; y ) = (1;1) và ( x; y ) = ⎜ 2; − ⎟ . ⎝ 2⎠ III Tính tích phân… (1,0 điểm) dt Đặt t = e x , dx = ; x = 1, t = e; x = 3, t = e3 . 0,25 t e3 e3 dt ⎛ 1 1⎞ I=∫ = ∫ ⎜⎝ t − 1 − t ⎟⎠ dt 0,25 e t (t − 1) e e3 e3 0,25 = ln| t − 1| e − ln| t | e = ln(e 2 + e + 1) − 2. 0,25 IV Tính thể tích khối chóp... (1,0 điểm) M Hạ IH ⊥ AC ( H ∈ AC ) ⇒ IH ⊥ ( ABC ) ; IH là đường cao A' C' của tứ diện IABC . I IH CI 2 2 4a ⇒ IH // AA ' ⇒ = = ⇒ IH = AA ' = . B' AA ' CA ' 3 3 3 2a 3a AC = A ' C 2 − A ' A2 = a 5, BC = AC 2 − AB 2 = 2a. K 1 0,50 Diện tích tam giác ABC : SΔABC = AB.BC = a 2 . A C 2 H a 1 4a 3 Thể tích khối tứ diện IABC : V = IH .S ΔABC = . B 3 9 Trang 2/4
  3. Câu Đáp án Điểm Hạ AK ⊥ A ' B ( K ∈ A ' B). Vì BC ⊥ ( ABB ' A ') nên AK ⊥ BC ⇒ AK ⊥ ( IBC ). 0,25 Khoảng cách từ A đến mặt phẳng ( IBC ) là AK . 2 SΔAA ' B AA '. AB 2a 5 AK = = = . 0,25 A' B A ' A2 + AB 2 5 V Tìm giá trị lớn nhất, nhỏ nhất… (1,0 điểm) Do x + y = 1, nên: S = 16 x 2 y 2 + 12( x3 + y 3 ) + 9 xy + 25 xy 0,25 = 16 x 2 y 2 + 12 ⎡⎣( x + y )3 − 3 xy ( x + y ) ⎤⎦ + 34 xy = 16 x 2 y 2 − 2 xy + 12. ( x + y )2 1 ⎡ 1⎤ Đặt t = xy, ta được: S = 16t 2 − 2t + 12; 0 ≤ xy ≤ = ⇒ t ∈ ⎢0; ⎥ . 4 4 ⎣ 4⎦ ⎡ 1⎤ Xét hàm f (t ) = 16t 2 − 2t + 12 trên đoạn ⎢0; ⎥ ⎣ 4⎦ 1 ⎛1⎞ 191 ⎛1⎞ 25 0,25 f '(t ) = 32t − 2; f '(t ) = 0 ⇔ t = ; f (0) = 12, f ⎜ ⎟ = , f⎜ ⎟ = . 16 ⎝ 16 ⎠ 16 ⎝ 4⎠ 2 ⎛ 1 ⎞ 25 ⎛ 1 ⎞ 191 max f (t ) = f ⎜ ⎟ = ; min f (t ) = f ⎜ ⎟ = . ⎡ 1⎤ 0; ⎢⎣ 4 ⎥⎦ ⎝ 4 ⎠ 2 ⎡0; 1 ⎤ ⎢⎣ 4 ⎥⎦ ⎝ 16 ⎠ 16 ⎧x + y = 1 25 ⎪ ⎛1 1⎞ Giá trị lớn nhất của S bằng ; khi ⎨ 1 ⇔ ( x; y ) = ⎜ ; ⎟ . 0,25 2 ⎪⎩ xy = 4 ⎝2 2⎠ ⎧x + y = 1 191 ⎪ Giá trị nhỏ nhất của S bằng ; khi ⎨ 1 16 ⎪⎩ xy = 16 0,25 ⎛2+ 3 2− 3⎞ ⎛2− 3 2+ 3⎞ ⇔ ( x; y ) = ⎜⎜ ; ⎟⎟ hoặc ( x; y ) = ⎜⎜ ; ⎟. ⎝ 4 4 ⎠ ⎝ 4 4 ⎟⎠ VI.a 1. (1,0 điểm) Viết phương trình đường thẳng… (2,0 điểm) ⎧7 x − 2 y − 3 = 0 Toạ độ A thoả mãn hệ: ⎨ ⇒ A(1;2). ⎩6 x − y − 4 = 0 0,25 B đối xứng với A qua M , suy ra B = (3; −2). Đường thẳng BC đi qua B và vuông góc với đường thẳng 6 x − y − 4 = 0. 0,25 Phương trình BC : x + 6 y + 9 = 0. ⎧7 x − 2 y − 3 = 0 ⎛ 3⎞ Toạ độ trung điểm N của đoạn thẳng BC thoả mãn hệ: ⎨ ⇒ N ⎜ 0; − ⎟ . 0,25 ⎩x + 6 y + 9 = 0 ⎝ 2⎠ JJJG JJJJG ⇒ AC = 2.MN = ( −4; −3) ; phương trình đường thẳng AC : 3x − 4 y + 5 = 0. 0,25 2. (1,0 điểm) Xác định toạ độ điểm D... ⎧x = 2 − t JJJG ⎪ AB = (−1;1;2), phương trình AB : ⎨ y = 1 + t 0,25 ⎪ z = 2t. ⎩ JJJG D thuộc đường thẳng AB ⇒ D(2 − t ;1 + t ;2t ) ⇒ CD = (1 − t ; t ;2t ). 0,25 Trang 3/4
  4. Câu Đáp án Điểm G Véc tơ pháp tuyến của mặt phẳng ( P ) : n = (1;1;1). C không thuộc mặt phẳng ( P ). 0,50 G JJJG 1 ⎛5 1 ⎞ CD //( P) ⇔ n.CD = 0 ⇔ 1.(1 − t ) + 1.t + 1.2t = 0 ⇔ t = − . Vậy D ⎜ ; ; −1⎟ . 2 ⎝ 2 2 ⎠ VII.a Tìm tập hợp các điểm… (1,0 điểm) Đặt z = x + yi ( x, y ∈ \ ); z − 3 + 4i = ( x − 3) + ( y + 4 ) i. 0,25 Từ giả thiết, ta có: ( x − 3) 2 + ( y + 4 ) 2 2 2 = 2 ⇔ ( x − 3 ) + ( y + 4 ) = 4. 0,50 Tập hợp điểm biểu diễn các số phức z là đường tròn tâm I ( 3; − 4 ) bán kính R = 2. 0,25 VI.b 1. (1,0 điểm) Xác định toạ độ điểm M ... (2,0 điểm) 2 Gọi điểm M ( a; b ) . Do M ( a; b ) thuộc (C ) nên ( a − 1) + b 2 = 1; O ∈ (C ) ⇒ IO = IM = 1. 0,25 n = 120D nên OM 2 = IO 2 + IM 2 − 2 IO.IM .cos120D ⇔ a 2 + b 2 = 3. Tam giác IMO có OIM 0,25 ⎧ 3 a= ⎧⎪( a − 1)2 + b 2 = 1 ⎪⎪ 2 ⎛3 3⎞ Toạ độ điểm M là nghiệm của hệ ⎨ ⇔⎨ Vậy M = ⎜⎜ ; ± ⎟. 0,50 ⎪⎩a 2 + b 2 = 3 ⎪b = ± 3 . ⎝2 2 ⎟⎠ ⎪⎩ 2 2. (1,0 điểm) Viết phương trình đường thẳng… ⎧x+ 2 y −2 z ⎪ = = Toạ độ giao điểm I của Δ với ( P) thoả mãn hệ: ⎨ 1 1 −1 ⇒ I (−3;1;1). 0,25 ⎪⎩ x + 2 y − 3z + 4 = 0 G G Vectơ pháp tuyến của ( P ) : n = (1;2; −3); vectơ chỉ phương của Δ : u = (1;1; −1). 0,25 G G G Đường thẳng d cần tìm qua I và có vectơ chỉ phương v = ⎡⎣ n, u ⎤⎦ = (1; −2; −1) . 0,25 ⎧ x = −3 + t ⎪ Phương trình d : ⎨ y = 1 − 2t 0,25 ⎪ z = 1 − t. ⎩ VII.b Tìm các giá trị của tham số m... (1,0 điểm) x2 + x − 1 Phương trình hoành độ giao điểm: = −2 x + m ⇔ 3x 2 + (1 − m) x − 1 = 0 ( x ≠ 0). 0,25 x Phương trình có hai nghiệm phân biệt x1 , x2 khác 0 với mọi m. 0,25 x1 + x2 m − 1 Hoành độ trung điểm I của AB : xI = = . 0,25 2 6 m −1 I ∈ Oy ⇔ xI = 0 ⇔ = 0 ⇔ m = 1. 0,25 6 -------------Hết------------- Trang 4/4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2