intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề khảo sát chất lượng lớp 12 lần 2, môn toán năm 2011 trường Đại học Vinh

Chia sẻ: Nguyễn Văn Phú | Ngày: | Loại File: DOC | Số trang:2

253
lượt xem
36
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Câu I. (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (H) hàm số y x 1 x 2 = - + - 2. Tìm trên (H) các điểm A,B sao cho độ dài AB = 4 và đường thẳng AB vuông góc với đường thẳng y =

Chủ đề:
Lưu

Nội dung Text: Đề khảo sát chất lượng lớp 12 lần 2, môn toán năm 2011 trường Đại học Vinh

  1. TRƯỜNG ĐẠI HỌC VINH ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 LẦN 2, NĂM 2011 TRƯỜNG THPT CHUYÊN MÔN : TOÁN; Thới gian làm bài :180 phút I.PHẦN CHUNH CHO TẤT CẢ THÍ SINH(7 điểm) Câu I. (2,0 điểm) −x + 1 1. Khảo sát sự biến thiên và vẽ đồ thị (H) hàm số y = x−2 2. Tìm trên (H) các điểm A,B sao cho độ dài AB = 4 và đường thẳng AB vuông góc với đường thẳng y = x Câu II(2,0 điểm) sin 2x + cos x − 3 ( cos 2x + sin x ) =0 1. Giải phương trình 2sin 2x − 3 x 4 + 4x 2 + y 2 − 4y = 2 2. Giải hệ phương trình x 2 y + 2x 2 + 6y = 23 x ln ( x + 2 ) Câu III.(1,0 điểm).Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = và trục hoành 4 − x2 Câu IV.(1,0 điểm). Cho hình chóp S.ABCD có đáy là hình chử nhật với AB = a, AD = a 2 , góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 600 . Gọi H là trung điểm cảu AB.Biết mặt bên SAB là tam giác cân tại đỉnh S và thuộc đường thẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và bán kính m ặt cầu ngoại tiếp hình chóp S.AHC Câu V.(1,0 điểm) Cho các số thực dương x, y, z thoả mãn x 2 + y 2 + z 2 + 2xy = 3(x + y + z) . Tìm giá trị nhỏ 20 20 nhất của biểu thức P = x + y + z + + x+z y+2 II. PHẦN RIÊNG (3,0 điểm) a. Theo chương trình chuẩn Câu VIa. (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC có phương trình chứa đường cao và đường trung tuyến kẻ từ đỉnh A lần lượt có phương trình x – 2y – 13 = 0 và 13x – 6y – 9 = 0. Tìm toạ độ B,C biết tâm đường tròn ngoại tiếp tam giác ABC là I(-5;1) 2. Trong không gian toạ độ Oxyz cho điểm A(1;0;0), B(2;-1;2), C(-1;1;3) và đường thẳng x −1 y z − 2 ∆: == . Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆ , đi qua điểm A và cắt −1 2 2 mặt phẳng (ABC) theo một đường tròn sao cho đường tròn có bán kính nhỏ nhất 9 Câu VIIa. (1,0 điểm) Tìm số phức z thoả mãn z − 3i = 1 − iz và z − là số thuần ảo z b. Theo chương trình nâng cao Câu VIb(2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho đường tròn (C): x 2 + y 2 − 4x + 2y − 15 = 0 . Gọi I là tâm đường tròn (C). Đường thẳng ∆ đi qua M(1;-3) cắt (C) tại hai điểm A và B. Viết phương trình đường thẳng ∆ biết tam giác IAB có diện tích bằng 8 và cạnh AB là cạnh lớn nhất x − 2 y + 1 z −1 2. Trong không gian toạ độ Oxyz cho điểm M(1;-1;0) và đường thẳng ∆ : = = và mặt −1 2 1 phẳng (P): x + y + z - 2 = 0. Tìm toạ độ điểm A thuộc mặt phẳng (P) biết đường thẳng AM vuông góc 33 với ∆ và khoảng cách từ A đến đường thẳng ∆ bằng 2
  2. 4 4 ���� z z Câu VIIb.(1,0 điểm ) Cho các số phức z1 , z2 thoả mãn z1 − z 2 = z1 = z 2 > 0 . Tính A = � 1 �+ � 2 � z z �2 � �1 �
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2