intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề tài báo cáo "Tối ưu hoá điều độ phát điện"

Chia sẻ: Quang Tùng Nguyễn | Ngày: | Loại File: DOC | Số trang:68

128
lượt xem
35
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Sau thời gian 4,5 năm học tập và nghiên cứu tại Trường Đại Học Điện Lực, chúng em đã được các thầy, cô truyền đạt cho những kiến thức cả về lý thuyết và thực hành, để chúng em áp dụng những kiến thức đó vào thực tế và làm quen với công việc của người kỹ sư trong tương lai. Để chuẩn bị cho kỳ tốt nghiệp kết thúc khóa học 2008-2013, em đã được nhận đề tài tốt nghiệp đó là: "Tối ưu hóa điều độ phát điện" do thầy giáo TS Trần Thanh Sơn - giảng viên...

Chủ đề:
Lưu

Nội dung Text: Đề tài báo cáo "Tối ưu hoá điều độ phát điện"

  1. BÁO CÁO ĐỀ TÀI Tối ưu hoá điều độ phát điện GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  2. LỜI NÓI ĐẦU Sau thời gian 4,5 năm học tập và nghiên cứu tại Trường Đại Học Điện Lực, chúng em đã được các thầy, cô truyền đạt cho những kiến thức cả về lý thuyết và thực hành, để chúng em áp dụng những kiến thức đó vào thực tế và làm quen với công việc của người kỹ sư trong tương lai. Để chuẩn bị cho kỳ tốt nghiệp kết thúc khóa học 2008-2013, em đã được nhận đề tài tốt nghiệp đó là: "Tối ưu hóa điều độ phát điện" do thầy giáo TS Trần Thanh Sơn - giảng viên Bộ môn mạng và hệ thống điện trực tiếp hướng dẫn em làm đồ án này. Đựơc sự giúp đỡ tận tình của thầy cùng các thầy, cô giáo trong khoa, trong trường, với sự lỗ lực của bản thân đến nay em đã hoàn thành đề tài tốt nghiệp của mình. Em xin gửi lời cảm ơn sâu sắc nhất đến thầy cùng toàn thể các thầy cô đã tạo mọi điều kiện giúp em hoàn thành đồ án một cách tốt nhất. Cuối cùng, em xin gửi lời cảm ơn chân thành đến gia đình, bạn bè- những người đã luôn bên cạnh em, tiếp thêm nguồn động lực cho em trong suốt những năm học qua. Đặc biệt, cảm ơn bạn cùng nhóm đề tài với em, chúng em đã cùng nhau nghiên cứu, trau dồi, thảo luận kiến thức để hoàn thành tốt đề tài này. Tuy nhiên, trong quá trình thực hiện đề tài, em còn nhiều bỡ ngỡ, do chưa có kinh nghiệm thực tiễn nên không tránh khỏi những sai sót, nhầm lẫn. Vì vậy, em rất mong nhận được sự góp ý của các thầy, cô giáo để hoàn thành tốt đồ án tốt nghiệp và nhiệm vụ học tập tại trường với kết quả cao. Hà Nội, tháng 1 năm 2013 Sinh viên thực hiện: Nguyễn Quang Tùng GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  3. MỤC LỤC LỜI NÓI ĐẦU ............................................................................................... 1 GIỚI THIỆU CHUNG .................................................................................. 7 Chương 1: Tối ưu hóa điều độ phát điện .................................................. 10 1.1 Mô hình bài toán điều độ phát điện .................................................. 10 1.2 Phương pháp hệ số Lagrange ............................................................ 12 1.3 Áp dụng cho bài toán tối ưu hóa điều độ phát điện ......................... 13 1.4 Phương pháp tính hệ số tổn thất ....................................................... 21 Chương 2: Chương trình tính tối ưu hóa điều độ phát điện ..................... 30 2.1 Giới thiệu về chương trình Matlab ................................................... 30 2.2 Tổ chức chương trình ........................................................................ 31 2.3 Kiểm tra chương trình ....................................................................... 43 Chương 3: Ứng dụng chương trình ........................................................... 48 3.1 Ứng dụng chương trình ..................................................................... 48 3.2 Kết luận chung ................................................................................... 56 TÀI LIỆU THAM KHẢO ........................................................................... 58 PHỤ LỤC ..................................................................................................... 59 GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  4. DANH SÁCH BẢNG BIỂU Bảng 2.1: Bảng thông số của các đường dây trong ví dụ 7.9 ................... 44 Bảng 2.2: Bảng kết quả modun và góc pha điện áp .................................. 45 Bảng 2.3: Bảng kết quả công suất nguồn tại các nút ................................. 45 Bảng 2.4: Bảng kết quả công suất tải tại các nút ....................................... 46 Bảng 2.5: Bảng kết quả sau khi giải tích lưới điện trong ví dụ tài liệu [1] ................................................................................................................................ 46 Bảng 2.6: Bảng kết quả các hệ số tổn thất trên lưới .................................. 46 Bảng 2.7: Bảng kết quả các hệ sô tổn thất trong ví dụ tài liệu [1] ............ 47 Bảng 3.1: Dữ liệu các nút ............................................................................ 49 Bảng 3.2: Dữ liệu máy biến áp ................................................................... 50 Bảng 3.3: Dữ liệu tụ bù ............................................................................... 50 Bảng 3.4: Giới hạn công suất tác dụng tại các nút .................................... 51 Bảng 3.5: Thông số của các đường dây...................................................... 51 Bảng 3.6: Kết quả mô đun và góc pha điện áp .......................................... 53 Bảng 3.7: Công suất phát trước khi tối ưu ................................................. 54 Bảng 3.8: Hệ số tổn thất trên lưới ............................................................... 54 Bảng 3.9: Bảng tổng kết kết quả so sánh chi phí nhiên liệu ..................... 56 GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  5. DANH SÁCH HÌNH VẼ Hình 1.1: Sơ đồ thuật toán bài toán tối ưu hóa điều độ phát điện ............ 18 Hình 1.2 :Sơ đồ thuật toán chương trình tính toán các hệ số tổn thất B... 29 Hình 2.1 : Tổ chức chương trình lập trình trong Matlab ........................... 32 Hình 2.2 :Sơ đồ thuật toán chương trình tính toán các hệ số tổn thất B... 41 Hình 2.3 : Sơ đồ thuật toán chương trình tối ưu hóa điều độ phát điện ... 43 Hình 2.4 : Sơ đồ hệ thống điện 5 nút .......................................................... 45 Hình 3.1: Sơ đồ lưới điện 26 nút................................................................. 49 GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  6. KÝ HIỆU CÁC CỤM TỪ VIẾT TẮT OPF Optimal power flow HTĐ Hệ thống điện Nút SL Nút cân bằng công suất Nút PV Nút giữ điện áp Nút PQ Nút phụ tải MBA Máy biến áp pu Đơn vị tương đối cb Đơn vị cơ bản GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  7. 7 GIỚI THIỆU CHUNG Hệ thống điện Việt Nam là một hệ thống điện (HTĐ) hợp nhất. Cùng với sự phát triển của kinh tế, xã hội dẫn đến sự phát triển không ngừng của phụ tải làm cho hệ thống điện vận hành trong tình trạng quá tải. Nguồn điện trong hệ thống điện Việt Nam có rất nhiều loại: thủy điện, nhiệt điện than, nhiệt điện dầu, tuabin khí chu trình đơn và chu trình hỗn hợp, điện diesel,...với các đặc tính vận hành rất khác nhau nên các phương án phân bố công suất cho các nhà máy khác nhau dẫn đến chi phí cho các nhà máy cũng khác nhau đáng kể. Mặt khác các nguồn điện phân bố không đều: - Miền Bắc chủ yếu là các nhà máy thủy điện và nhiệt điện than; - Miền Nam: bao gồm các nhà máy nhiệt điện dầu, tuabin khí và tuabin khí hỗn hợp; - Miền Trung: cho đến nay có ít nhà máy điện. Lưới cung cấp điện còn tồn tại nhiều vấn đề bất cập: có quá nhiều cấp điện áp (110, 66, 35, 22, 15, 10, 6 kV), cũ nát, phi tiêu chuẩn (thiếu bù và các phương tiện điều chỉnh điện áp), tổn thất truyền tải cao, dung lượng bù công suất phản kháng rất thiếu, ... Do sự tăng lên về quy mô và sự phức tạp đó trong hệ thống điện nên vấn đề tối ưu trong quy hoạch và khai thác hệ thống trở nên thiết yếu. Đường dây liên kết với giả thiết có công suất truyền tải khác nhau ảnh hưởng rất nhiều đến chi phí vận hành của toàn hệ thống. Khi đó bài toán tối ưu hóa là rất cần thiết nhằm mục đích đạt được hiệu quả cao trong vận hành. Các bài toán tối ưu là một công cụ hữu hiệu giúp chúng ta có những giải pháp đơn giản nhất để giải quyết một vấn đề dù đơn giản hay phức tạp. Bài toán tối ưu mà bản chất là bài toán giải tìm cực trị của một hàm dưới những ràng buộc nào đó nên có rất nhiều thuật toán giải. Ngày nay, với sự phát triển của khoa học và kĩ thuật, phạm vi ứng dụng của tối ưu hóa ngày càng được mở rộng, các bài toán tối ưu được giải quyết nhanh và chính xác hơn. GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  8. 8 Ngành Hệ thống điện là một trong những lĩnh vực mà bài toán tối ưu hóa được ứng dụng rất nhiều như: tối ưu hóa chi phí nhiên liệu, tối ưu hóa tổn thất công suất tác dụng, tối ưu hóa tổn thất công suất phản kháng, tối ưu hóa công suất tác dụng của máy phát ở nút cân bằng, tối ưu hóa công suất phản kháng của máy phát ở nút cân bằng, ... Khoảng cách giữa các nhà máy điện đến phụ tải khác nhau nên tổn thất trong quá trình truyền tải là khác nhau và phụ thuộc vào công suất của các nhà máy. Hơn nữa chi phí nhiện liệu cho các nhà máy cũng khác nhau. Do đó vấn đề phân bố công suất tác dụng và công suất phản kháng phát của mỗi nhà máy nhằm cực tiểu hóa hàm chi phí nhiên liệu của toàn bộ hệ thống được đặt ra. Có nghĩa rằng, ta phải tính công suất tác dụng và công suất phản kháng nằm trong giới hạn cho trước mà vẫn đảm bảo nhu cầu phụ tải với chi phí nhiên liệu nhỏ nhất. Bài toán này được gọi là bài toán tối ưu hóa điều độ phát điện. Trong phạm vi nghiên cứu của đề tài này, chúng ta phân tích bài toán tối ưu hóa điều độ công suất tác dụng phát. Bài toán này phục vụ tính phân bố công suất cho các nhà máy sao cho tổng chi phí nhiên liệu của hệ thống đạt giá trị nhỏ nhất với điều kiện có tính đến tổn thất công suất tác dụng và giới hạn công suất tác dụng phát. Đề tài tốt nghiệp gồm 3 chương như sau: - Chương 1: Tối ưu hóa điều độ phát điện. Chương này giới thiệu bài toán tối ưu hóa điều độ phát điện trong ngành HTĐ. Mô hình toán học của bài toán được đưa ra sau đó bài toán được giải bằng phương pháp Lagrange. Một ví dụ với các số liệu cụ thể để có sự hình dung rõ hơn về vấn đề được giới thiệu. Phần cuối của chương giới thiệu phương pháp tính toán các hệ số tổn thất để phục vụ cho bài toán tối ưu hóa điều độ phát điện. - Chương 2: Chương trình tính toán tối ưu hóa điều độ phát điện. Chương này gồm 2 phần: phần đầu chương giới thiệu về lập trình các thuật toán ở trên trong Matlab, phần thứ 2 đưa ra một hệ thống điện đơn giản để kiểm tra thuật toán và chương trình đã lập trình. - Chương 3: Ứng dụng chương trình. Chương này sử dụng chương trình để tính toán cho trường hợp phức tạp hơn với bài toán quy mô lớn hơn. Và cuối cùng là một số những kết luận chung. GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  9. 9 GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  10. 10 Tối ưu hóa điều độ phát điện 1.1 Mô hình bài toán điều độ phát điện Hệ thống điện bao gồm nhiều nhà máy điện và các phụ tải được nối với nhau thông qua các đường dây truyền tải điện. Ở mỗi chế độ làm việc, các phụ tải sẽ yêu cầu cung cấp một lượng công suất nhất định. Việc phân chia lượng công suất này cho các nhà máy điện trong hệ thống để đạt được chi phí sản xuất nhỏ nhất là một bài toán lớn, vì: - Mỗi nhà máy điện có một hàm chi phí nhiên liệu riêng và giới hạn công suất phát khác nhau . - Tổn thất công suất từ các nhà máy đến các phụ tải cũng rất khác nhau do khoảng cách và công suất tiêu thụ của các phụ tải là khác nhau. Trong phần này chúng ta sẽ xét mô hình toán học của bài toán tối ưu hóa điều độ phát điện khi tính đến tổn thất công suất tác dụng và giới hạn công suất phát. Khi truyền tải một lượng công suất lớn mà khoảng cách truyền tải ngắn thì tổn thất truyền tải có thể được bỏ qua và việc tối ưu hóa công suất phát đạt được với tất cả các nhà máy được thể hiện ở phương trình chi phí sản xuất. Tuy nhiên, trong một lưới điện liên kết lớn nơi mà năng lượng điện được truyền tải trên một khoảng cách dài với khu vực mật độ tải thấp thì tổn thất truyền tải là một yếu tố quyết định và có ảnh hưởng đến việc tối ưu hóa điều độ phát điện của các nhà máy. Để giải quyết bài toán đặt ra ta coi tổng tổn thất truyền tải như một hàm bậc hai của các công suất phát của các máy phát điện. Dạng phương trình đơn giản nhất là: ng ng PL   Pi Bij Pj ( 0.1) i 1 j 1 Trong đó ng là tổng số máy phát trong hệ thống xét. GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  11. 11 Khai triển công thức thành các thành phần tuyến tính và hằng số gọi là công thức tổn thất Kron được trình bày ở mục 1.4 có dạng: ng ng ng PL   Pi Bij Pj   B0i Pi  B00 ( 0.2) i 1 j 1 i 1 Trong đó - Bij: hệ số tổn thất giữa các nút i và nút j còn gọi là hệ số B , có thể coi là không đổi trong quá trình tính toán - B0i : hệ số tổn thất ứng với nút thứ i - B00: hệ số tổn thất cố định - ng – số máy phát phân bố tối ưu công suất trong tổng số n máy phát - Pi , Pj - công suất ứng với nút thứ i và nút thứ j. Có nhiều phương pháp để xây dựng phương trình tổn thất. Một phương pháp tính toán các hệ số B được trình bày trong mục 1.4. Đặc tính chi phí nhiên liệu sản xuất điện trong 1 giờ của nhà máy nhiệt điện thứ i có thể biểu thị dưới dạng hàm bậc 2 theo công suất tác dụng của nguồn phát như sau: ng n Ct   Ci   i  i Pi   i .Pi 2 ( 0.3) i 1 i 1 - Trong đó  i , i ,  i là các hệ số hồi quy được tính toán từ đặc tính thực nghiệm suất tiêu hao nhiên liệu của nguồn thứ i - Pi là công suất phát của nguồn thứ i. Bài toán điều độ phát điện là tìm các giá trị Pi vừa thỏa mãn các điều kiện rằng buộc vừa cực tiểu hóa được hàm chi phí nhiên liệu Ct của hệ thống. Các điều kiện rằng buộc là tổng công suất phát cân bằng với với tổng công suất tiêu thụ của phụ tải cộng với tổn thất: ng P  P i 1 i D  PL ( 0.4) và điều kiện về giới hạn công suất phát của mỗi nhà máy trong hệ thống xét: Pi (min)  Pi  Pi (max) i  1,..., ng ( 0.5) GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  12. 12 Trong đó: Pi(max); Pi(min) là các giới hạn công suất của nhà máy thứ i. 1.2 Phương pháp hệ số Lagrange Một trong những phương pháp thông dụng và phổ biến để giải bài toán tối ưu hóa có xét đến các điều kiện rằng buộc là phương pháp hệ số Lagrange. Ta xét bài toán được ra như sau: Xác định giá trị nhỏ nhất của hàm sau: f ( x1 , x2 , x3 ..., xn ) ( 0.6) với điều kiện các biến x 1, x 2, x3, . . . x n phải thỏa mãn các điều kiện rằng buộc dạng phương trình: gi ( x1 , x2 , x3 ..., xn )  0 ; i  1, 2,3...., k ( 0.7) hoặc các rằng buộc dạng bất phương trình: u j ( x1 , x2 , x3 ..., xn )  0 ; j  1, 2,3...., m ( 0.8) Bài toán trên được giải bằng phương pháp hệ số Lagrance như sau:  Ta sẽ lập hàm chi phí mới có tính đến các điều kiện rằng buộc. Hàm Lagrange được thành lập như sau: k m L  f   i .gi   i .ui ( 0.9) i 1 i 1  Trong đó li và mi là các hằng số  Tính đạo hàm riêng của hàm Lagrance ở trên theo các biến và cho triệt tiêu ta nhận được hệ phương trình sau: L L  0 ; i 1, 2,3..., n  u j  0 ; j  1, 2,...m xi i L ( 0.10)  gi  0 ; i  1, 2,....k  j .u j  0 (  j  0) ; j  1, 2...., m i  Giải hệ phương trình trên ta nhận được các giá trị x1, x2 , x 3…, xn m và l (   0 ) i i  Thay lại hàm f ( x1 , x2 , x3 ..., xn ) ban đầu các giá trị vừa tìm được rồi kết luận. GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  13. 13 L Chú ý rằng phương trình  g i  0 ; i  1, 2,....k là rằng buộc đơn i giản ban đầu. Giả sử (x1,x2,…, x n) là giá trị nhỏ nhất thỏa mãn. Bất phương L trình rằng buôc  u j  0 ; j  1, 2,...m không xảy ra nếu bất phương trình i tại điểm (x1,x2,…, xn) có i =0. Mặt khác, khi phương trình cân bằng được xác lập, rằng buộc thỏa mãn ở điểm (x1,x2,…, x n) đó (ví dụ nếu rằng buộc  j .u j  0 và  j > 0) . Đây chính là điều kiện Kuhn-Tucker. 1.3 Áp dụng cho bài toán tối ưu hóa điều độ phát điện Trong phần này ta xét ứng dụng phương pháp hệ số Lagrange để giải bài toán tối ưu hóa điều độ ở phần 1.1. Thêm các điều kiện rằng buộc vào hàm mục tiêu trong phương trình (1.3) ta nhận được hàm Lagrance có dạng: ng ng L = Ct + l(PD + PL - å Pi ) + å mi(max) (Pi - Pi(max) ) i=1 i=1 ng ( 0.11) + å mi(min) (Pi - Pi(min) ) i=1 Các ràng buộc được hiểu theo nghĩa là: i (max)  0 khi Pi  Pi (max) ( 0.12) i (min)  0 khi Pi  Pi (min) Giá trị nhỏ nhất của các hàm ràng buộc này được tìm thấy tại điểm mà ở đó đạo hàm riêng của hàm theo các biến của nó bằng 0. L 0 ( 0.13) Pi L 0 ( 0.14)  L  Pi  Pi (max)  0 ( 0.15) i (max) L  Pi  Pi (min)  0 ( 0.16) i (min) GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  14. 14 Trong công thức (1.15) và (1.16) Pi không được phép vượt giới hạn của nó và khi Pi tiến dần đến giới hạn thì: i (min)  i (max)  0 ( 0.17) và hàm Kuhn-Tucker trở thành một hàm Lagrange. Điều kiện thứ nhất đưa bởi (1.13) cho ta kết quả sau: Ct P   (0  L  1)  0 ( 0.18) Pi Pi Ta có: Ct  C1  C2  ...  Cng ( 0.19) Suy ra: Ct dCi  ( 0.20) Pi dPi Vì vậy, điều kiện cho tối ưu hóa điều độ là: dCi P  L   i  1,..., ng ( 0.21) dPi Pi Trong đó  PL được gọi độ gia tăng tổn thất truyền tải.  Pi Điều kiện thứ 2 được đưa bởi (1.14), kết quả là: ng P  P i 1 i D  PL ( 0.22) Phương trình (1.22) chính là phương trình điều kiện rằng buộc của bài toán Biến đổi phương trình (1.21) dưới dạng như sau: 1 C ( ) i  i  1,..., ng PL Pi ( 0.23) 1 Pi Hoặc: dCi Li  i  1,..., ng ( 0.24) dPi Trong đó Li là hệ số phạt của máy phát thứ i, được cho bởi công thức: GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  15. 15 1 Li  P ( 0.25) 1 L Pi Phương trình (1.24) chỉ ra rằng chi phí nhỏ nhất đạt được khi độ gia tăng chi phí của mỗi nhà máy theo cấp số nhân bởi hệ số phạt với các nhà máy thì như nhau. Độ gia tăng chi phí sản xuất được đưa bởi công thức: dCi  2 i .Pi  i ( 0.26) dPi và gia tăng tổn thất công suất truyền tải thu được từ công thức tính tổn thất của Kron chính là lợi nhuận (sản lượng): n PL g  2 Bij Pj  B0i ( 0.27) Pi j 1 Thay thế kết quả vào công thức tính độ gia tăng chi phí sản xuất (1.26) và gia tăng tổn thất công suất truyền tải (1.21) ta có kết quả sau: ng i  2 i Pi  2  Bij Pj  B0i    ( 0.28) j 1 Hoặc: ng i 1  (  Bii ) Pi   Bij Pj  (1  B0i  i ) ( 0.29)  j 1 2  j i Áp dụng (1.29) cho tất cả các nhà máy, ta nhận được 1 hệ phương trình tuyến tính ở dạng ma trận như sau:  1  1  1  B01       B11 B12 ........ B1ng       Pg1  1  B   2  B 2  P   02    B22 ....... B2 ng  1   21  . g2  .   ......  2  ( 0.30) .    .    ng   Pgng        ng   Bn 1 Bn 2 .......  Bng ng   g g   1  B0 ng        GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  16. 16 Hay dưới dạng ngắn gọn: E.P  D ( 0.31) Trong đó  1    1  B01       B11 B12 ........ B1ng       Pg1  1  B   2  02 B 2        B22 ....... B2 ng P 1 E  21   , P   g2  D  .    ...... , 2  .    .    ng   Pgng        ng   Bng 1 Bng 2 .......  Bng ng     1  B0 ng        Để tìm tối ưu hóa điều độ phát điện ta chọn một giá trị ước lượng ban đầu (1) của λ . Công thức (1.29) để tính Pi ở vòng lặp thứ k được xác định như sau:  ( k ) (1  B0i )  i  2 ( k )  Bij Pj( k ) Pi ( k )  j i ( 0.32) 2( i   ( k ) Bii ) Thay thế Pi từ (1.32) vào (1.22) ta nhận được:  ( k ) (1  B0i )  i  2 ( k )  Bij Pj( k ) ng j i  PD  PL( k ) i 1 (k ) 2( i   Bii ) ( 0.33) Hoặc: f ( )( k )  PD  PL( k ) ( 0.34) Khai triển vế bên phải của phương trình trên theo khai triển Taylor tại một điểm λ(k) và bỏ qua các thành phần bậc cao thì được kết quả là: df ( )( k ) f ( )( k )  ( ). ( k )  PD  PL( k ) ( 0.35) d ( ) Hoặc: P ( k ) P ( k )  ( k )   df ( ) ( k ) dPi ) ( 0.36) ( d )  ( d  )( k ) GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  17. 17 Trong đó: ng ng  i (1  B0i )  Bii  i  2 i  Bij Pj( k ) Pi (k ) j i ( 0.37)  (  ) i 1  i 1 2( i   ( k ) Bii ) 2 ng P ( k )  PD  PL( k )   Pi ( k ) ( 0.38) i 1 Ta được giá trị mới của λ là:  ( k 1)   ( k )   ( k ) ( 0.39) (k) Quá trình lặp cứ tiếp tục cho đến khi ∆P nhỏ hơn một giá trị xác định. Nếu công thức tổn thất được lấy xấp xỉ theo công thức sau: ng PL   Bii Pi 2 ( 0.40) i 1 Khi đó: Bij=0, B00=0 và kết quả của phương trình cho bởi (1.32) được xác định đơn giản như sau:  ( k )  i Pi ( k )  ( 0.41) 2( i   ( k ) Bii ) Và cho bởi (1.37) là: ng n Pi ( k ) g  i  Bii  i ( i 1  )  i 1 2( i   ( k ) Bii ) 2 ( 0.42) Dưới đây là sơ đồ thuật toán của bài toán trên GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  18. 18 Hình 0.1: Sơ đồ thuật toán bài toán tối ưu hóa điều độ phát điện Để làm rõ hơn ta tính toán cho 1 bài toán được trích từ trang 284 – tài liệu [1]. Bài toán: Chi phí nhiên liệu của 3 nhà máy nhiệt điện của một hệ thống điện như sau: C1  200  7 P  0, 008 P 2 1 1 C2  180  6, 3P2  0, 009 P22 C3  140  6,8P3  0, 007 P32 Công suất phát của các nhà máy được giới hạn sau: GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  19. 19 10  P1  85 10  P2  80 10  P3  70 Giả sử tổn thất điện năng được cho bởi biểu thức đơn giản: PL ( pu )  0,0218.P12 pu )  0,0228.P22( pu )  0,0179.P32 pu ) ( ( Lấy Scb=100 MVA. Xác định điều độ tối ưu của các nhà máy khi tổng phụ tải hệ thống là 150MW. 2 2 2   P   P   P   PL  0,0218 1   0,0228 2   0,0179 3  .100    100   100   100    MW  0,000218.P12  0,000228.P22  0,000179.P32 MW Cho các giải pháp số sử dụng phương pháp Gradient, giả sử giá trị ban (1) đầu   8 từ phương trình phối hợp (1.41), ta tính được P1, P2, P3 là: 8 7 P (1)  1  51,3136 2(0, 008  8.0, 000218) 8  6,3 P2(1)   78,5292 2.(0, 009  8.0, 000228) 8  6,8 P3(1)   71,1575 2(0, 007  8.0, 000179) Tổn thất công suất PL(1)  0,000218.(51,3136)2  0,000228.(78,5292)2  0,000179.(71,1575) 2  2,886 Với PD = 150 MW. Sai lệch P theo công thức (7.68) là: P (1)  150  2.8864  (51,3136  785292  71,1575)  48,1139 Từ (1.42) ta suy ra 3 (1)  P  0, 008  0, 000128.7 0, 009  0, 000228.6, 3 0, 007  0, 000179.6,8   i   2(0, 008  8.0, 000128)2  2(0, 009  8.0, 000228)2  2(0,007  8.0, 000179)2 i 1    152, 4924 Từ (1.36) ta tính được:  48,1139 (1)   0,31552 152, 4924 Khi đó, giá trị mới của  là GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
  20. 20 ( 2 )  8  0,31552  7,6845 Tiếp tục như trên với bước 2 ra có 7, 6845  7 P (2)  1  35, 3728 2(0, 008  7, 6845.0, 000218) 7, 6845  6,3 P2(2)   64,3821 2.(0, 009  7, 6845.0, 000228) 7, 6845  6,8 P3(2)   52,8015 2(0, 007  7, 6845.0, 000179) Tổn thất công suất: PL(2)  0,000218.(35,3728)2  0,000228.(64,3821)2  0,000179.(52,8015) 2  1,7169 (2) Với PD = 150 MW. Sai lệch P là: P ( 2)  150  1,7169  (35,3728  64,3821  52,8015)  0,8395 Từ (1.42) 3 (2)  Pi  0, 008  0, 000128.7 0, 009  0, 000228.6,3 0, 007  0, 000179.6,8      i 1     2(0, 008  7, 684.0, 000128) 2 2(0, 009  7, 684.0, 000228)2 2(0, 007  7, 684.0, 000179)2  154, 588 Từ (1.36)  0,8395  ( 2 )   0,005431 154,588 Khi đó, giá trị mới của  là (3)  7,6845  0,005431 7,679 Lặp với bước 3 ta có 7, 679  7 P (2)  1  35, 0965 2(0, 008  7, 679.0, 000218) 7, 679  6,3 P2(2)   64,1369 2.(0, 009  7, 679.0, 000228) 7, 679  6,8 P3(2)   52, 4834 2(0, 007  7, 679.0, 000179) Tổn thất công suất: PL(3)  0,000218.(35,0965) 2  0,000228.(64,1369)2  0,000179.(52,4834)2  1,6995 ( 3) Với PD= 150 MW. Sai lệch P theo công thức (7.68) là GVHD: TS Trần Thanh Sơn SVTH: Nguyễn Quang Tùng
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2