Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2021-2022 có đáp án - Sở GD&ĐT Hải Dương
lượt xem 1
download
Nhằm giúp các bạn học sinh đang chuẩn bị bước vào kì thi có thêm tài liệu ôn tập, TaiLieu.VN giới thiệu đến các bạn Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2021-2022 có đáp án - Sở GD&ĐT Hải Dương để ôn tập nắm vững kiến thức. Chúc các bạn đạt kết quả cao trong kì thi!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2021-2022 có đáp án - Sở GD&ĐT Hải Dương
- SỞ GD-ĐT HẢI DƯƠNG ĐỀ THI HỌC SINH GIỎI LỚP 12 CẤP TRƯỜNG Trường THPT chuyên Nguyễn Trãi NĂM HỌC 2021-2022 Thời gian làm bài: 180 phút Môn: Toán Câu 1. (2 điểm) un 3 Cho dãy số un n1 xác định bởi u1 0, un 1 n 1 . 5 un a) Chứng minh rằng dãy un n1 có giới hạn hữu hạn và tìm giới hạn đó. n 1 Tn b) Đặt Tn . Tìm lim . k 1 uk 3 n 5n 4 Câu 2. (2 điểm) Tìm tất cả các hàm số f : ¡ ¡ sao cho: f y f x f x 2018 y 2017 yf ( x ), x, y ¡ . Câu 3. (2 điểm) Có bao nhiêu cách lát kín bảng 2 2022 bởi các viên domino 1 2 và 2 1 ? Câu 4. (2 điểm) Cho tam giác nhọn ABC với AB BC . Cho I là tâm nội tiếp của tam giác ABC và là đường tròn ngoại tiếp tam giác ABC . Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại K . Đường thẳng AK cắt tại điểm thứ hai T . Cho M là trung điểm của BC và N là điểm chính giữa cung » chứa A của . Đoạn thẳng NT cắt đường tròn ngoại tiếp tam giác BIC ở P . Chứng minh rằng BC a) Cho KI cắt ( BIC ) tại điểm thứ hai X thì N ; T ; X thẳng hàng. b) PM ‖ AK . Câu 5. (2 điểm) Cho dãy số xn1 a.xn n ¥ ; xo ¥ * ; a là nghiệm dương của phương trình x2 kx 1 0 ( k ¥ ; k 1 ) với số nguyên dương k cho trước. Khi đó chứng minh rằng xn 1 xn 1 1 (mod k ) . Giải Câu 1 :
- a) Ta chứng minh bằng quy nạp theo n ¥ , dãy un * bị chặn trên bởi 1 và là một dãy tăng. n 1 x3 +) Ta có u1 1. Giả sử un 1 n ¥ . Vì hàm f x * là đồng biến trên khoảng 5 x ( ;1) nên un 1 un1 f un f 1 1. Vậy un 1 với mọi n ¥ . * 3 +) Ta có u2 u1 . Giả sử un un1 n 2 . Do un , un 1 1 và f là đồng biến trên khoảng 5 ( ;1) nên un1 f un f un1 un . Vậy dãy un tăng và bị chặn trên nên có giới hạn hữu hạn. n 1 a 3 a 1 +) Đặt lim un a a 1 . Suy ra a . n 5a a 3 Vậy lim un 1. n 4(uk 1 3) 1 1 2 b) Ta có uk 3 1 k 2 . 5 uk 1 uk 3 4 uk 1 3 1 n 1 1 1 n 1 Tn 2 n 1 u1 3 k 2 uk 3 3 4 k 2 uk 1 3 1 1 1 1 n Tn . 12 4 2 un 3 1 1 1 Tn 1 Suy ra Tn n lim . 6 2 un 3 n 5n 4 10 Câu 2 : Giả sử hàm số f ( x) thỏa mãn yêu cầu bài toán. +)Trong (1) thay y bởi f ( x) ta có : f 0 f x 2018 f ( x) 2017( f ( x)) 2 , x ¡ (2). 2018 +)Trong (1) thay y bởi x ta có : f x 2018 f ( x) f 0 2017 x 2018 f ( x), x ¡ (3). Từ (2) và (3) suy ra f x ( f ( x) x ) 0, x ¡ 2018 (4). Vậy nếu có x0 sao cho f ( x0 ) 0 thì f ( x0 ) x0 2018 . Vậy f 0 0. Dễ thấy có hai hàm số f1 ( x) 0 và f 2 ( x) x , x ¡ thỏa mãn (4). 2018
- +) Ta chứng minh nếu có hàm số f ( x) khác hai hàm số f1 ( x ) và f 2 ( x ) mà thỏa mãn cả (1) và (4) thì vô lý. Vì f ( x) khác f1 ( x ) nên x1 ¡ : f ( x1 ) 0. Vậy f ( x1 ) x1 2018 . Vì f ( x) thỏa mãn (4) và khác f 2 ( x ) nên x2 ¡ : x2 0; f ( x2 ) 0. +) Trong (1) cho x 0 f ( y ) f ( y ), y ¡ . Không mất tổng quát, giả sử x2 0 +)Trong (1) thay x bởi x 2 và y bởi ( x1 ) ta có : f ( x1 ) f ( x2 2018 x1 ) x12018 f ( x1 ) f ( x1 ) f ( x2 2018 x1 ) ( x2 2018 x1 ) 2018 x12018 . (vô lý). +) Bằng cách thử trực tiếp vào (1) ta có kết quả hàm số cần tìm là f ( x) 0, x ¡ . Câu 3: Gọi a(n) là số cách lát. Ta xét hai trường hợp sau: +) Nếu hàng 2 ô đầu tiên được lát bởi viên gạch 2 1 thì bảng trên trở thành 2 (n 1) ; ta có a(n 1) cách lát. +) Nếu 4 ô vuông 2 2 ở 2 hàng đầu tiên được lát bởi 2 viên gạch 1 2 thì ta có a(n) cách lát. Như vậy a(n) a(n 1) a(n 2) với a(1) 1; a(2) 2 . Suy ra a(n) Fn là số Fibonacci thứ n . Như vậy số cách lát là F2022 Câu 4:
- » không chứa A . a) Cho AI cắt ( ABC) tại điểm thứ hai S , như vậy S là trung điểm cung BC Theo tính chất trục đẳng phương thì AITX là tứ giác nội tiếp, từ đó: ( AITX ) ATN ASN SIX 1800 XIA 1800 XTA Và suy ra N ; T ; X thẳng hàng b) Đặt P là I A M ( BIC ) , với I A AI ( ABC ) là tâm đường tròn bàng tiếp góc A . Theo tính chất trục đẳng phương NPSI A là tứ giác nội tiếp. Khi đó TNS TAS TXI PXI PI A S PNS Và từ đó suy ra N ; P; T thẳng hàng. Như vậy, P NT ( BIC ). Suy ra PI A S PNS TAI A và PM ‖ AK (đpcm). Câu 5: +) Ta có xn 1 a.xn xn 1 1 xn 1 x 1 xn n 1 . a a xn 1 x 1 +) Do a là số vô tỉ nên xn n 1 a a
- x +) n 1 xn 1 n ¥ (1) a x 1 +) n1 1 n ¥ (2) a a +) Ta có 1 xn1 a.xn xn k a x x n xn .k n xn .k xn .k xn 1 1 a a Như vậy xn 1 k .xn xn 1 1 Suy ra xn 1 xn 1 1 (mod k ) (đpcm).
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ 10 đề thi học sinh giỏi môn Toán lớp 10 cấp tỉnh có đáp án
60 p | 427 | 38
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2019-2020 - Sở GD&ĐT Hà Nội
10 p | 42 | 4
-
Để thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020 có đáp án - Trường THPT Lê Quý Đôn, Đống Đa
7 p | 45 | 4
-
Đề thi học sinh giỏi môn Toán lớp 11 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Bình Định
1 p | 124 | 4
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Hà Tĩnh
8 p | 56 | 4
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 có đáp án - Sở GD&ĐT Bắc Ninh
6 p | 14 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT Khánh Hòa
1 p | 44 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Trường THPT Chu Văn An, Hà Nội
2 p | 37 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 - Trường THPT Tiên Du số 1, Bắc Ninh
6 p | 44 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Khánh Hòa
1 p | 29 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Hưng Yên
2 p | 60 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Hải Dương
8 p | 33 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Phước
10 p | 34 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Định
1 p | 83 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Sở GD&ĐT Hà Nội
8 p | 63 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2019-2020 - Sở GD&ĐT Đà Nẵng
32 p | 32 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT An Giang
2 p | 53 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2020-2021 - Trường THCS chuyên Nguyễn Du, Đăk Lắk (Vòng 1)
1 p | 66 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn