intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi kết thúc học phần Xác suất thống kê năm 2019 - Đề số 2 (09/06/2019)

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:1

6
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mời các bạn cùng tham khảo Đề thi kết thúc học phần Xác suất thống kê năm 2019 - Đề số 2 (09/06/2019) sau đây để biết được cấu trúc đề thi, cách thức làm bài thi cũng như những dạng bài chính được đưa ra trong đề thi. Từ đó, giúp các bạn sinh viên có kế hoạch học tập và ôn thi hiệu quả.

Chủ đề:
Lưu

Nội dung Text: Đề thi kết thúc học phần Xác suất thống kê năm 2019 - Đề số 2 (09/06/2019)

  1. KHOA CÔNG NGHỆ THÔNG TIN ĐỀ THI KẾT THÚC HỌC PHẦN BỘ MÔN TOÁN Tên Học phần: Xác suất thống kê Đề số: 02 Thời gian làm bài: 75 phút Ngày thi: 09/06/2019 Loại đề thi: Tự luận Yêu cầu: Các kết quả tính toán làm tròn đến 4 chữ số thập phân. Câu I (2,0 điểm) Một người trồng 2 cây hoa trắng và 3 cây hoa đỏ. Mỗi cây hoa trắng có xác suất sống là 0,7; mỗi cây hoa đỏ có xác suất sống là 0,6. 1. (0,5 đ) Tính xác suất để khi trồng 2 cây hoa trắng có đúng 1 cây sống. 2. (1,5 đ) Tính xác suất để số cây hoa đỏ sống bằng số cây hoa trắng sống. Câu II (1,0 điểm) Cho biết năng suất X (tấn/ha) của một giống ngô là biến ngẫu nhiên có phân phối chuẩn N (8; 0,52 ) . Tính xác suất để một thửa ruộng trồng giống ngô này có năng suất từ 7 đến 9 tấn/ha. Câu III (3,0 điểm) 1. (1,0 đ) Trong đợt khám sức khỏe ở một công ty than, người ta kiểm tra 800 người, thấy có 110 người mắc bệnh về phổi. Với độ tin cậy 95% hãy tìm khoảng tin cậy của tỉ lệ công nhân mắc bệnh về phổi trong công ty than trên. 2. (2,0 đ) Theo dõi tiền điện X (triệu đồng/tháng) của gia đình A trong 8 tháng và tiền điện Y (triệu đồng/tháng) của gia đình B trong 10 tháng tại một khu dân cư ta thu được số liệu sau: X 1,5 1,2 1,3 0,9 1,6 1,8 0,9 1,2 Y 1,3 1,1 1,8 1,2 1,7 1,6 1,4 0,8 1,1 1,5 Với mức ý nghĩa 0,05 có thể coi tiền điện trung bình của gia đình A thấp hơn gia đình B không? Giả sử X , Y là hai biến ngẫu nhiên có phân phối chuẩn với phương sai bằng nhau. Câu IV (2,0 điểm) Một loài hoa mười giờ có 4 màu: hồng, vàng, trắng, tím. Với mẫu gồm 300 bông hoa thuộc loài trên người ta nhận thấy có 80 bông màu hồng, 53 bông màu vàng, 95 bông màu trắng và 72 bông màu tím. 1. (0,5 đ) Tìm một ước lượng không chệch của tỷ lệ bông màu vàng của loài hoa mười giờ trên. 2. (1,5 đ) Với mức ý nghĩa 0,05 kiểm định cặp giả thuyết-đối thuyết: H 0 : Tỷ lệ bông màu hồng, vàng, trắng, tím theo tỉ lệ 5:4:6:5. H1 : Trái với H 0 . Câu V (2,0 điểm) Thí nghiệm việc sử dụng một loại phân vi lượng X ( g / m2 ) và năng suất một loại lúa Y ( g / m2 ) trên 10 thửa ruộng ta có kết quả sau: X 25 30 35 40 45 50 55 60 65 70 Y 0,50 0,55 0,60 0,65 0,60 0,65 0,70 0,75 0,70 0,80 1. (1,25 đ) Tính các giá trị thống kê: x , y , xy , x2 , y 2 . 2. (0,75 đ) Hãy viết phương trình đường hồi quy tuyến tính mẫu của Y theo X. Cho:   2  0,9772; 3;0,05 2  7,815; U0,025  1,96; t16;0,05  1,746. ................................... HẾT ................................... Ghi chú: + Cán bộ coi thi không phải giải thích gì thêm + Sinh viên không được sử dụng tài liệu Cán bộ ra đề Duyệt đề Nguyễn Thị Lan Phan Quang Sáng
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2