Đề thi Olympic sinh viên thế giới năm 2002 ngày 2
lượt xem 12
download
" Đề thi Olympic sinh viên thế giới năm 2002 ngày 2 giới có dịp gặp gỡ, trao đổi, giao lưu và thể hiện khả năng học toán, làm toán của mình. Từ đó đến nay, các kỳ thi Olympic sinh viênthế giới đã liên tục được mở rộng quy mô rất lớn. Kỳ thi này là một sự kiện quan trọng đối với phong trào học toán của sinh viên thế giới trong trường đại học trên thế giới. Tài liệu hay giúp ích cho việc tham khảo....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi Olympic sinh viên thế giới năm 2002 ngày 2
- Solutions for problems in the 9th International Mathematics Competition for University Students Warsaw, July 19 - July 25, 2002 Second Day Problem 1. Compute the determinant of the n × n matrix A = [a ij ], (−1)|i−j| , if i = j, aij = 2, if i = j. Solution. Adding the second row to the first one, then adding the third row to the second one, ..., adding the nth row to the (n − 1)th, the determinant does not change and we have 2 −1 +1 . . . ±1 1 1 1 0 0 ... 0 0 −1 2 −1 . . . 1 ±1 0 1 1 0 ... 0 0 +1 −1 2 . . . ±1 1 0 0 1 1 ... 0 0 det(A) = . . . .. . . = . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ±1 1 ... 2 −1 0 0 0 0 ... 1 1 ±1 1 ±1 . . . −1 2 ±1 1 ±1 1 ... −1 2 Now subtract the first column from the second, then subtract the result- ing second column from the third, ..., and at last, subtract the (n − 1)th column from the nth column. This way we have 1 0 0 ... 0 0 0 1 0 ... 0 0 det(A) = . . . . . . . . . .. . . . . . . . = n + 1. 0 0 0 ... 1 0 0 0 0 ... 0 n+1 Problem 2. Two hundred students participated in a mathematical con- test. They had 6 problems to solve. It is known that each problem was correctly solved by at least 120 participants. Prove that there must be two participants such that every problem was solved by at least one of these two students. Solution. For each pair of students, consider the set of those problems which was not solved by them. There exist 200 = 19900 sets; we have to prove 2 that at least one set is empty. 1
- For each problem, there are at most 80 students who did not solve it. From these students at most 80 = 3160 pairs can be selected, so the 2 problem can belong to at most 3160 sets. The 6 problems together can belong to at most 6 · 3160 = 18960 sets. Hence, at least 19900 − 18960 = 940 sets must be empty. Problem 3. For each n ≥ 1 let ∞ ∞ kn kn an = , bn = (−1)k . k! k! k=0 k=0 Show that an · bn is an integer. Solution. We prove by induction on n that a n /e and bn e are integers, we prove this for n = 0 as well. (For n = 0, the term 0 0 in the definition of the sequences must be replaced by 1.) From the power series of ex , an = e1 = e and bn = e−1 = 1/e. Suppose that for some n ≥ 0, a0 , a1 , . . . , an and b0 , b1 , ...bn are all multi- pliers of e and 1/e, respectively. Then, by the binomial theorem, n ∞ ∞ n (k + 1)n+1 (k + 1)n n km an+1 = = = = (k + 1)! k! m k! k=0 k=0 k=0 m=0 n ∞ n n km n = = am m=0 m k! m=0 m k=0 and similarly n ∞ (k + 1)n+1 (k + 1)n bn+1 = (−1)k+1 =− (−1)k = (k + 1)! k! k=0 k=0 ∞ n n ∞ n n km n km n =− (−1)k =− (−1)k =− bm . m=0 m k! m=0 m k! m=0 m k=0 k=0 The numbers an+1 and bn+1 are expressed as linear combinations of the previous elements with integer coefficients which finishes the proof. Problem 4. In the tetrahedron OABC, let ∠BOC = α, ∠COA = β and ∠AOB = γ. Let σ be the angle between the faces OAB and OAC, and let τ be the angle between the faces OBA and OBC. Prove that γ > β · cos σ + α · cos τ. Solution. We can assume OA = OB = OC = 1. Intersect the unit sphere with center O with the angle domains AOB, BOC and COA; the intersec- tions are “slices” and their areas are 1 γ, 2 α and 1 β, respectively. 2 1 2 2
- Now project the slices AOC and COB to the plane OAB. Denote by C the projection of vertex C, and denote by A and B the reflections of vertices A and B with center O, respectively. By the projection, OC < 1. The projections of arcs AC and BC are segments of ellipses with long axes AA and BB , respectively. (The ellipses can be degenerate if σ or τ is right angle.) The two ellipses intersect each other in 4 points; both half ellipses connecting A and A intersect both half ellipses connecting B and B . There exist no more intersection, because two different conics cannot have more than 4 common points. The signed areas of the projections of slices AOC and COB are 1 α·cos τ 2 1 and 2 β · cos σ, respectively. The statement says thet the sum of these signed areas is less than the area of slice BOA. There are three significantly different cases with respect to the signs of cos σ and cos τ (see Figure). If both signs are positive (case (a)), then the projections of slices OAC and OBC are subsets of slice OBC without common interior point, and they do not cover the whole slice OBC; this implies the statement. In cases (b) and (c) where at least one of the signs is negative, projections with positive sign are subsets of the slice OBC, so the statement is obvious again. Problem 5. Let A be an n × n matrix with complex entries and suppose that n > 1. Prove that −1 AA = In ⇐⇒ ∃ S ∈ GLn (C) such that A = SS . (If A = [aij ] then A = [aij ], where aij is the complex conjugate of aij ; GLn (C) denotes the set of all n×n invertible matrices with complex entries, and In is the identity matrix.) −1 Solution. The direction ⇐ is trivial, since if A = SS , then −1 AA = SS · SS −1 = In . For the direction ⇒, we must prove that there exists an invertible matrix S such that AS = S. Let w be an arbitrary complex number which is not 0. Choosing S = wA + wIn , we have AS = A(wA + wIn ) = wIn + wA = S. If S is 1 singular, then w S = A − (w/w)In is singular as well, so w/w is an eigen- value of A. Since A has finitely many eigenvalues and w/w can be any complex number on the unit circle, there exist such w that S is invertible. 3
- Problem 6. Let f : Rn → R be a convex function whose gradient f = ∂f ∂f n ∂x1 , . . . , ∂xn exists at every point of R and satisfies the condition ∃L > 0 ∀x1 , x2 ∈ Rn f (x1 ) − f (x2 ) ≤ L x1 − x2 . Prove that ∀x1 , x2 ∈ Rn f (x1 ) − f (x2 ) 2 ≤L f (x1 ) − f (x2 ), x1 − x2 . (1) In this formula a, b denotes the scalar product of the vectors a and b. Solution. Let g(x) = f (x)−f (x1 )− f (x1 ), x−x1 . It is obvious that g has the same properties. Moreover, g(x 1 ) = g(x1 ) = 0 and, due to convexity, g has 0 as the absolute minimum at x1 . Next we prove that 1 g(x2 ) ≥ g(x2 ) 2 . (2) 2L 1 Let y0 = x2 − L g(x2 ) and y(t) = y0 + t(x2 − y0 ). Then 1 g(x2 ) = g(y0 ) + g(y(t)), x2 − y0 dt = 0 1 = g(y0 ) + g(x2 ), x2 − y0 − g(x2 ) − g(y(t)), x2 − y0 dt ≥ 0 1 1 2 ≥0+ g(x2 ) − g(x2 ) − g(y(t)) · x2 − y0 dt ≥ L 0 1 1 2 ≥ g(x2 ) − x 2 − y0 L x2 − g(y) dt = L 0 1 1 2 2 1 = g(x2 ) − L x 2 − y0 t dt = g(x2 ) 2 . L 0 2L Substituting the definition of g into (2), we obtain 1 f (x2 ) − f (x1 ) − f (x1 ), x2 − x1 ≥ f (x2 ) − f (x1 ) 2 , 2L 2 f (x2 ) − f (x1 ) ≤ 2L f (x1 ), x1 − x2 + 2L(f (x2 ) − f (x1 )). (3) Exchanging variables x1 and x2 , we have 2 f (x2 ) − f (x1 ) ≤ 2L f (x2 ), x2 − x1 + 2L(f (x1 ) − f (x2 )). (4) The statement (1) is the average of (3) and (4). 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi Olympic sinh viên thế giới năm 1994
9 p | 216 | 34
-
Đề thi Olympic sinh viên thế giới năm 2008
4 p | 168 | 23
-
Đề thi Olympic sinh viên thế giới năm 2005
8 p | 145 | 21
-
Đề thi Olympic sinh viên thế giới năm 1995
11 p | 204 | 20
-
Đề thi Olympic sinh viên thế giới năm 2006
7 p | 139 | 20
-
ĐỀ THI OLYMPIC SINH VIÊN TOÁN TOÀN QUỐC MÔN ĐẠI SỐ NĂM 2007
1 p | 157 | 19
-
Đề thi Olympic sinh viên thế giới năm 1996
15 p | 188 | 17
-
Đề thi Olympic sinh viên thế giới năm 2004
7 p | 127 | 16
-
Đề thi Olympic sinh viên thế giới năm 1997 ngày 2
5 p | 158 | 16
-
Đề thi Olympic sinh viên thế giới năm 2000
8 p | 161 | 15
-
Đề thi Olympic sinh viên thế giới năm 1998
7 p | 152 | 15
-
Đề thi Olympic sinh viên thế giới năm 2007
7 p | 131 | 15
-
Đề thi Olympic sinh viên thế giới năm 1999
6 p | 144 | 13
-
Đề thi Olympic sinh viên thế giới năm 2001
9 p | 166 | 13
-
Đề thi Olympic sinh viên thế giới năm 1997 ngày 1
8 p | 123 | 12
-
Đề thi Olympic sinh viên thế giới năm 2003
8 p | 128 | 12
-
Đề thi Olympic sinh viên thế giới năm 2002 ngày 1
5 p | 136 | 12
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn