Đề thi thử đại học, cao đẳng năm 2011 môn toán khối A,B trường Lê Quý Đôn
lượt xem 5
download
Tham khảo tài liệu 'đề thi thử đại học, cao đẳng năm 2011 môn toán khối a,b trường lê quý đôn', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học, cao đẳng năm 2011 môn toán khối A,B trường Lê Quý Đôn
- Generated by Foxit PDF Creator © Foxit Software http://ductam_tp.violet.vn/ http://www.foxitsoftware.com For evaluation only. SỞ GIÁO DỤC & ĐÀO TẠO THÁI NGUYÊN TRƯỜNG THPT LƯƠNG NGỌC QUYẾN ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ I – NĂM 2011 MÔN TOÁN- KHỐI D (Thời gian làm bài 180 phút-không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH x2 Cho hàm số : y Câu I: (2 điểm) (C) x 1 a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C). b) Chứng minh rằng: với mọi giá trị của m, đường thẳng d : y x m luôn cắt đồ thị (C) tại hai điểm A,B phân biệt. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. Câu II: (2 điểm) a)Giải bất phương trình: 2 2 2 9 2 x x 1 34.152 x x 252 x x 1 0 b)Tìm a để hệ phương trình sau có nghiệm : x+1 y 1 a x y 2a 1 Câu III: (2 điểm) 1 1 8 2 cos x cos2 ( x ) sin 2 x 3cos( x ) sin 2 x a) Giải phương trình: 3 3 23 1 3 x 1 b) Tính : e dx 0 Câu IV: (1 điểm) Trong không gian với hệ toạ độ Oxyz ,cho điểm I(1;5;0) và hai đường thẳng x t x y2 z 1 : y 4 t ; 2 : 1 3 3 z 1 2t Viết phương trình tham số của đường thẳng d đi qua điểm I và cắt cả hai đường thẳng 1 và 2 Viết phương trình mặt phẳng( ) qua điểm I , song song với 1 và 2 PHẦN RIÊNG: Thí sinh chỉ được làm 1 trong 2 câu V.a hoặc V.b Câu V.a DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH CHUẨN (3 điểm) 1)Trong không gian , cho hệ trục toạ độ Đề Các vuông góc Oxyz Tìm số các điểm có 3 toạ độ khác nhau từng đôi một,biết rằng các toạ độ đó đều là các số tự nhiên nhỏ hơn 10. Trên mỗi mặt phẳng toạ độ có bao nhiêu điểm như vậy ? 2) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng đường cao, bằng a. Tính khoảng cách giữa hai đường thẳng SC và AB 3) Giải phương trình: 3log2 x x 2 1 Câu V.b: DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH NÂNG CAO (3 điểm) 1) Chứng minh rằng phương trình : x 5 5 x 5 0 có nghiệm duy nhất x2 y2 1 , biết tiếp tuyến đi qua điểmA(4;3) 2)Viết phương trình các tiếp tuyến của e líp (E): 16 9 3) Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một , trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3. HẾT Họ và tên thí sinh………Số báo danh……………Phòng thi…
- Generated by Foxit PDF Creator © Foxit Software ĐÁP ÁN CHẤM THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG LẦN I- For evaluation only. http://www.foxitsoftware.com KHỐI D Năm học 2009-2010 PHẦN Điểm thành Nội dung chính và kết quả CHUNG phần (7 điểm) Câu I D=R/ 1 a) (1điểm) 1 y ' 0,25 điểm > 0 , x D h/số đồng biến trên D và không có cực trị ( x 1) 2 Các đường tiệm cận: T/c đứng x=1; T/c ngang: y =1 Tâm đối xứng I(1;1) 2 điểm BBT - + x 1 y’ + + 0,25 điểm + 1 y - 1 Đồ thị y f(x)=(x-2)/(x-1) f(x)=1 7 x(t)=1 , y(t)=t 6 0,5 điểm 5 4 3 2 1 x -3 -2 -1 1 2 3 4 5 -1 -2 -3 -4 -5 b) (1 điểm) * Phương trình hoành độ giao điểm của d (C ) là: 0,25 điểm x 2 mx m 2 0 (1) ; đ/k x 1 m2 4m 8 0 Vì với m ,nên p/t (1) có 2 nghiệm phân biệt khác 1 với m .Suy f (1) 1 0 0,25 điểm ra d (C ) tại hai điểm phân biệt với m *Gọi các giao điểm của d (C ) là: A( x A ; x A m ) ; B( xB ; xB m );với x A ; xB là các nghiệm của p/t (1) 0,25 điểm 2 AB 2 2( xA xB )2 2 ( x A xB ) 4 xA .xB 2 2 2 m 4(m 2) 2 (m 2) 4 8 0,25 điểm Vậy : AB min 2 2 , đạt được khi m = 2
- Generated by Foxit PDF Creator © Foxit Software a) (1 điểm) Câu II http://www.foxitsoftware.com For evaluation only. 0,25điểm 2 2 2 2 2 2 2 92 x x 1 34.152 x x 252 x x 1 0 9.32(2 x x ) 34.32 x x . 52 x x 25.52(2 x x ) 0 2 2 x x 3 2 điểm 1 2 2(2 x x 2 ) 2x x 5 3 3 9. 34. 25 0 0,25điểm 2 5 5 3 2 x x 25 5 9 2x x2 0 x (;1 3) (0; 2) (1 3; ) 2 x x 2 0,5 điểm KL: Bpt có tập nghiệm là T= (;1 3) (0; 2) (1 3; ) x 1 y 1 a b)(1 điểm) đ/k x 1; y 1 .Bất pt 2 2 ( x 1) ( y 1) 2a 1 0,25 điểm x 1 y 1 a 12 x 1. y 1 a (2a 1) ; Vậy x 1 và y 1 là nghiệm của p/t: 2 0,25điểm 1 2 T aT (a 2 2a 1) 0 * .Rõ ràng hệ trên có nghiệm khi p/t* có 2 nghiệm không âm 2 a 2 2(a 2 2a 1) 0 0 0,5điểm S 0 a 0 1 2 a 2 6 P 0 1 (a 2 2a 1) 0 2 Câu III 1 1 8 2cosx+ cos 2 ( x ) sin 2 x 3cos(x+ )+ sin 2 x a) (1 điểm) 3 3 23 1 8 1 2cosx+ cos 2 x sin 2 x 3s inx+ sin 2 x 2 điểm 3 3 3 0,25 điểm 6cosx+cos x 8 6s inx.cosx-9sinx+sin 2 x 2 7 6cosx(1-sinx)-(2sin 2 x 9s inx+7) 0 6cosx(1-sinx)-2(s inx-1)(s inx- ) 0 2 0,25 điểm 1 s inx=0 (1) x k 2 ;(k Z ) (1-sinx)(6cosx-2sinx+7) 0 6cosx-2sinx+7=0(2) 2 0,5 điểm (p/t (2) vô nghiệm ) 1 3 x 1 b) (1 điểm) Tính: I= e dx 0 0,5 điểm x 0 t 1 2 3x 1 t ; t 0 3 x 1 t 2 dx t.dt ; Đặt x 1 t 2 3 2 u t du dt 2t 0,5 điểm Vậy I= Đặt . te dt 3 dv et dt v et 1 2 2 2 Ta có I (tet et dt ) e 2 3 3 1
- Generated by Foxit PDF Creator © Foxit Software Câu Nội dung chính và kết quả Điểm http://www.foxitsoftware.com For evaluation only. thành phần x t x y2 z 1 : y 4 t 2 : I(1;5;0) , 1 3 3 z 1 2t Câu IV 1 có vtcp u1 (1; 1; 2) ;và 1 đi qua điểm M 1 (0; 4; 1) 1 điểm 2 có vtcp u2 (1; 3; 3) ; 2 đ i qua điểm M 2 (0; 2;0) 0,25 điểm mp(P)chứa 1 và điểm I có vtpt n M 1 I , u1 (3; 1; 2) p/t mp(P) : 3x –y - 2z + 2 = 0 Tương tự mp(Q) chứa 2 và điểm I có vtpt n' (3;-1;2) p/t mp(Q) : 3x - y + 2z + 2 = 0 *Vì đường thẳng d qua I , cắt 1 và 2 , nên d = (P) (Q) 0,25 điểm đường thẳng d có vtcp ud n, n ' = (1;3;0); d đi qua điểm I(1;5;0) x 1 t Nên p/t tham số của d là y 5 3t z 0 *mp( ) qua điểm I và song song với 1 và 2 nên ( ) có vtpt n = u1 , u2 =(9;5;-2) 0,5 điểm p/t ( ) : 9x + 5y -2z – 34 = 0
- Generated by Foxit PDF Creator © Foxit Software CâuVa 1)(1 điểm) Tập hợp các số tự nhiên nhỏ hơn 10 : 0;1; 2;3; 4;5; 6; 7;8;9 For evaluation only. http://www.foxitsoftware.com 0,5 điểm 3 *Số điểm có 3 toạ độ khác nhau đôi một là: A10 720 (điểm) * Trên mỗi mặt phẳng toạ độ,mỗi điểm đều có một toạ độ bằng 0, hai toạ độ còn lại khác 0,5 điểm nhau và khác 0.Số các điểm như vậy là: A92 72 (điểm) 2) * Xác định k/c(AB;SC) Vì AB//mp(SDC) d(AB,SC) = d(AB,mp(SDC)) 3 điểm 0,25 điểm Lấy M,N lần lượt là trung điểm của AB,DC;Gọi O = AC BD mp(SMN) mp(SDC) Hạ MH SN , (H SN) MH mp(SDC) MH = d(M;(SDC)) = d(AB;(SDC))= d(AB;SC) 0,25 điểm * Tính MH: Hạ OI SN MH = 2.OI ON 2 .OS2 1 1 1 OI 2 SNO vuông có: OI 2 ON 2 OS2 ON 2 OS2 S 0,25 điểm H I C B O M N A a D 0,5 điểm ; OS = a Với ON = 2 a5 2a 5 MH= ta tính được OI = 0,5 điểm 5 5 log 2 x x 1 * ; Đ/k x>0 . Đặt log 2 x t x 2t 2 3 3) (1 điểm) t t 3 1 p/t * 3t 4t 1 1. Nhận thấy p/t này có nghiệm t = 1, và c/m được 4 4 nghiệm đó là duy nhất. Vậy , ta được : log 2 x 1 x 2 KL: p/t có duy nhất nghiệm x = 2
- Generated by Foxit PDF Creator © Foxit Software Câu Vb 1)(1 điểm) Đặt f ( x ) x 5 5 x 5 f ' ( x) http://www.foxitsoftware.com 2 For evaluation only. 5( x 4 1) 5( x 1)( x 1)( x 1) 0,25 điểm x 1 3 điểm .Ta có bảng biến thiên của h/s f(x): f '( x) 0 x 1 - + x -1 1 f’(x) + 0 - 0 + 0,25 điểm + -1 f(x) - -9 0,5 điểm Nhìn vào bảng biến thiên,ta thấy : đường thẳng y=0 chỉ cắt đồ thị của h/s f(x) tại một điểm duy nhất. Vậy p/t đã cho có 1 nghiệm duy nhất xx yy 2) (1 điểm) Gọi toạ độ tiếp điểm là ( x0 ; y0 ), PTTT (d) có dạng: 0 0 1 * 16 9 4 x0 3 y0 Vì A(4;3) (d) 1 (1) 0,25 điểm 16 9 x0 2 y0 2 Vì tiếp điểm ( E ) ,nên 1 (2) .Từ (1),(2) ta có 16 9 0,25 điểm 12 3 x0 y0 x 4; y0 0 0 . Từ p/t * , ta thấy có 2 tiếp tuyến của (E) đi qua 4 9 x 2 16 y 2 144 x0 0; y0 3 0,5 điểm 0 0 điểm A(4;3) là : (d 1 ) : x – 4 = 0 ; (d 2 ) : y–3=0 3)(1 điểm) TH1 : Số phải tìm chứa bộ 123: Lấy 4 chữ số 0; 4;5;6; 7;8;9 : có A74 cách Cài bộ 123 vào vị trí đầu,hoặc cuối,hoặc giữa hai chữ số liền nhau trong 4 chữ số vừa lấy: có 5 cách 0,5 điểm có 5 A74 = 5.840 = 4200 số gồm 7 chữ số khác nhau trong đó chứa bộ 123 3 Trong các số trên, có 4 A6 = 4.120 = 480 số có chữ số 0 đứng đầu 5 A74 - 4 A6 = 3720 số phải tìm trong đó có mặt bộ 123 3 Có TH 2 : Số phải tìm có mặt bộ 321 (lập luận tương tự) 0,5 điểm Có 3720 số gồm 7 chữ số khác nhau , có bặt 321 Kết luận: có 3720.2 = 7440 số gồm 7 chữ số khác nhau đôi một,trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3 Chú ý :- Nếu học sinh làm theo cách khác đúng thì phải cho điểm tối đa
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học-Cao đẳng môn Hoá học - THPT Tĩnh Gia
4 p | 1799 | 454
-
ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC KHỐI D - ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A, B - TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Lần II
6 p | 596 | 157
-
Đề thi thử đại học cao đẳng môn vật lý_Số 01
11 p | 257 | 103
-
Đề thi thử đại học, cao đẳng năm 2010 môn sinh học lần 1
7 p | 260 | 99
-
ĐÁP ÁN + ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010- LB1 Môn thi : TOÁN
4 p | 195 | 60
-
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
9 p | 194 | 32
-
Đề thi thử Đại học, Cao đẳng môn tiếng Anh - Trường THPT Cửa Lò (Đề 4)
8 p | 147 | 28
-
5 đề thi thử đại học cao đẳng môn hóa
29 p | 133 | 24
-
ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG MÔN: ANH VĂN - Trường THPT Trần Cao Vân
5 p | 84 | 15
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 31
6 p | 80 | 11
-
Tuyển tập Đề thi thử Đại học, Cao đẳng môn Toán 2012 - Trần Sỹ Tùng
58 p | 115 | 11
-
Đề thi thử đại học cao đẳng lần V môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 113 | 8
-
Đề thi thử đại học cao đẳng lần IV môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 107 | 7
-
Đề thi thử Đại học Cao đẳng môn Hóa học số 1 năm 2013 (Khối A - B): Mã đề 121
7 p | 76 | 5
-
Đề thi thử đại học cao đẳng lần III môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 113 | 4
-
ĐỀ THI THỬ ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG - Mã đề thi 915
7 p | 39 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 38 (Kèm đáp án)
6 p | 67 | 3
-
Đề thi thử Đại học Cao đẳng lần 1 năm 2013 môn Hóa học - Trường THPT Quỳnh Lưu 1
18 p | 80 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn